【題目】已知兩條直線l1(3+m)x+4y=5﹣3m,l2 2x+(5+m)y=8.當(dāng)m分別為何值時,l1與l2
(1)相交?
(2)平行?
(3)垂直?

【答案】
(1)解:當(dāng)m=﹣5時,顯然l1與l2相交;當(dāng)m≠﹣5時,易得兩直線l1和l2的斜率分別為

k1=﹣ ,k2=﹣ ,它們在y軸上的截距分別為b1= ,b2=

由k1≠k2,得﹣ ≠﹣ ,m≠﹣7且m≠﹣1.

∴當(dāng)m≠﹣7且m≠﹣1時,l1與l2相交


(2)解:由 ,得 解得m=﹣7.∴當(dāng)m=﹣7時,l1與l2平行
(3)解:由k1k2=﹣1,得﹣ (﹣ )=﹣1,解得m=﹣ .∴當(dāng)m=﹣ 時,l1與l2垂直
【解析】(1)利用直線不平行,直線即可相交,推出m的范圍.(2)通過直線的斜率相等,截距不相等,判斷直線平行,求出m的值.(3)當(dāng)兩條直線的斜率乘積是﹣1時,兩條直線垂直,求出1的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教育學(xué)家分析發(fā)現(xiàn)加強語文樂隊理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗證這個結(jié)論,從該校選擇甲乙兩個同軌班級進行試驗,其中甲班加強閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時間后進行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強語文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?

(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時間在6—8分鐘,現(xiàn)小明、小剛同時獨立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明現(xiàn)正確解答完的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為自然對數(shù)的底數(shù)),, .

(1)若的極值點,且直線分別與函數(shù)的圖象交于,求兩點間的最短距離;

(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1=1,an+an+1=( n , Sn=a1+4a2+42a3+…+4n1an , 類比課本中推導(dǎo)等比數(shù)列前項和公式的方法,可求得5Sn﹣4nan=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點為橢圓上一點,直線的方程為,求證:直線與橢圓有且只有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運動的速度為130m/min,山路AC長為1260m,經(jīng)測量,cosA= ,cosC=
(1)求索道AB的長;
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,向量,函數(shù).

(1)求的單調(diào)減區(qū)間;

(2)將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個單位長度,得到的圖象,求函數(shù)的解析式及其圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計

1

(1)求出表中及圖中的值;

(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案