設(shè)P(x,y)是+=1上一點(diǎn),則x+y的最小值為_(kāi)_________________.
-
設(shè)(θ為參數(shù)),
x+y=2cosθ+3sinθ=sin(θ+φ)(其中sinφ=,cosφ=).
∴當(dāng)sin(θ+φ)=-1時(shí),x+y的最小值為-.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓G:的兩個(gè)焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓上的一點(diǎn),且滿(mǎn)足
(Ⅰ)求離心率e的取值范圍;
(Ⅱ)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為求此時(shí)橢圓G的方程;(ⅱ)設(shè)斜率為k(k≠0)的直線(xiàn)l與橢圓G相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)的直線(xiàn)對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的焦點(diǎn)分別為、,直線(xiàn)軸于點(diǎn),且.
(1)試求橢圓的方程;
(2)過(guò)分別作互相垂直的兩直線(xiàn)與橢圓分別交于、、四點(diǎn)(如圖所示),試求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三角形ABC的三個(gè)頂點(diǎn)均在橢圓上,且點(diǎn)A是橢圓短軸的一個(gè)端點(diǎn)(點(diǎn)A在y軸正半軸上).
(1)若三角形ABC的重心是橢圓的右焦點(diǎn),試求直線(xiàn)BC的方程;若角A為,AD垂直BC于D,試求點(diǎn)D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓ax2+by2=1與直線(xiàn)x+y=1相交于A、B兩點(diǎn),且|AB|=2.又AB的中點(diǎn)M與橢圓中心連線(xiàn)的斜率為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓=1的焦點(diǎn)為F1、F2,P是橢圓上任意一點(diǎn),一條斜率為的直線(xiàn)交橢圓于A、B兩點(diǎn),如果當(dāng)a變化時(shí),總可同時(shí)滿(mǎn)足:
①∠F1PF2的最大值為;
②直線(xiàn)l:ax+y+1=0平分線(xiàn)段AB.
求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在橢圓+=1上取三點(diǎn),其橫坐標(biāo)滿(mǎn)足x1+x3=2x2,三點(diǎn)順次與某一焦點(diǎn)連接的線(xiàn)段長(zhǎng)是r1、r2、r3,則有(    )
A.r1、r2、r3成等差數(shù)列B.r1、r2、r3成等比數(shù)列
C.、成等差數(shù)列D.、成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若線(xiàn)段AB的兩個(gè)端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),|AB|=60,點(diǎn)M是AB上一點(diǎn),且|AM|=36,則點(diǎn)M的軌跡方程是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

α∈(0,),方程x2sinα+y2cosα=1表示焦點(diǎn)在y軸上的橢圓,則α的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案