【題目】已知函數(shù)f(x)=2sin(ωx+ )(ω>0)的周期為π,則下列選項(xiàng)正確的是( )
A.函數(shù)f(x)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱
C.函數(shù)f(x)的圖象關(guān)于直線x= 對(duì)稱
D.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對(duì)稱
【答案】B
【解析】解:函數(shù)f(x)=2sin(ωx+ )(ω>0)的周期為π, 即T= ,
∴ω=2.
則f(x)=2sin(2x+ ),
由對(duì)稱軸方程:2x+ = ,(k∈Z)
得:x= ,(k∈Z)
經(jīng)考查C,D選項(xiàng)不對(duì).
由對(duì)稱中心的橫坐標(biāo):2x+ =kπ,(k∈Z)
得:x= ,(k∈Z)
當(dāng)k=0時(shí),可得圖象的對(duì)稱中心坐標(biāo)為(﹣ ,0).
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦函數(shù)的對(duì)稱性的相關(guān)知識(shí)可以得到問題的答案,需要掌握正弦函數(shù)的對(duì)稱性:對(duì)稱中心;對(duì)稱軸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(I)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ(a≠0).
(Ⅰ)求圓C的直角坐標(biāo)系方程與直線l的普通方程;
(Ⅱ)設(shè)直線l截圓C的弦長(zhǎng)等于圓C的半徑長(zhǎng)的 倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有A,B,C,D,E五輛汽車,其中A、B兩輛汽車的車牌尾號(hào)均為1,C、D兩輛汽車的車牌尾號(hào)均為2,E車的車牌尾號(hào)為6,已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為 ,C、D兩輛汽車每天出車的概率均為 ,且五輛汽車是否出車相互獨(dú)立,該公司所在地區(qū)汽車限行規(guī)定如下:
車牌尾號(hào) | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(α)=cosα
(Ⅰ)當(dāng)α為第二象限角時(shí),化簡(jiǎn)f(α);
(Ⅱ)當(dāng)α∈( ,π)時(shí),求f(α)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)不相等的非零向量 , ,兩組向量均由 , , , 和 , , , 均由2個(gè) 和2個(gè) 排列而成,記S= + + + ,Smin表示S所有可能取值中的最小值,則下列命題中正確的個(gè)數(shù)為( )
①S有3個(gè)不同的值;
②若 ⊥ ,則Smin與| |無關(guān);
③若 ∥ ,則Smin與| |無關(guān);
④若| |=2| ,Smin=4 ,則 與 的夾角為 .
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C1: + =1(a>b>0),長(zhǎng)軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是 .
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,不等式 的解集為[-1,5]
(1)求實(shí)數(shù) 的值;
(2)若 恒成立,求實(shí)數(shù) 的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com