20.在空間,若長方體的長、寬、高分別為a、b、c,則長方體的對角線長為$\sqrt{{a}^{2}+^{2}+{c}^{2}}$.將此結(jié)論類比到平面內(nèi),可得:矩形的長、寬分別為a、b,則矩形的對角線長為$\sqrt{{a}^{2}+^{2}}$.

分析 利用勾股定理,即可得出結(jié)論.

解答 解:利用勾股定理,若矩形的長、寬分別為a、b,
則矩形的對角線長為$\sqrt{{a}^{2}+^{2}}$.
故答案為:$\sqrt{{a}^{2}+^{2}}$.

點評 本題考查類比推理,解題的關(guān)鍵掌握并理解類比推理的定義,并能根據(jù)類比的定義鑒別所舉的事例是否滿足類比推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|1≤x≤4},B={x|x<2或x>4},求:
①A∩B
②∁R(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)$\overrightarrow{a}$,$\overrightarrow$是不共線的兩個非零向量.
(1)若$\overrightarrow{OA}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OB}$=3$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{a}$-3$\overrightarrow$,求證:A、B、C三點共線;
(2)設(shè)$\overrightarrow{OM}$=m$\overrightarrow{a}$,$\overrightarrow{ON}$=n$\overrightarrow$,$\overrightarrow{OP}$=α$\overrightarrow{a}$+β$\overrightarrow$,其中m,n,α,β均為實數(shù),m≠0,n≠0,若M、P、N三點共線,求證:$\frac{α}{m}$+$\frac{β}{n}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.方程16x-17×22x+16=0的解是x=0,x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2-2x+3,求下列情況下二次函數(shù)的最值
(1)2≤x≤3;
(2)x∈[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若直線l的一般式方程為xsinθ-$\sqrt{3}$y+1=0(θ∈R),則直線l的傾斜角的取值范圍是$[0,\frac{π}{6}]∪[\frac{5π}{6},π)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.使不等式x2>x${\;}^{\frac{1}{2}}$成立的x的取值范圍是( 。
A.x>1B.0<x<1C.x>0D.x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}滿足:a1=3,an+1=9•$\root{3}{{a}_{n}}$(n≥1),則$\underset{lim}{n→∞}$an=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.袋子中裝有大小相同的5個小球,分別有 2個紅球,3個白球.現(xiàn)從中隨機抽取2個小球,則這2個球中既有紅球也有白球的概率為$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊答案