【題目】f(x)=|x+a|+|x﹣a2|,a∈(﹣1,3)
(1)若a=1,解不等式f(x)≥4
(2)若對(duì)x∈R,a∈(﹣1,3),使得不等式m<f(x)成立,求m的取值范圍.
【答案】
(1)解:a=1,不等式f(x)≥4為|x+1|+|x﹣1|≥4
x<﹣1,不等式化為1﹣x﹣x﹣1≥4,解得x≤﹣2,∴x≤﹣2;
﹣1≤x≤1,不等式化為1﹣x+x+1≥4,無(wú)解;
x>1,不等式化為x﹣1+x+1≥4,解得x≥2,∴x≥2,
∴不等式的解集為{x|x≤﹣2或x≥2}
(2)解:∵f(x)=|x+a|+|x﹣a2|≥|x+a﹣x+a2|=|a+a2|
對(duì)x∈R,a∈(﹣1,3),使得不等式m<f(x)成立
∴a∈(﹣1,3),m<|a+a2|
令g(a)=a+a2,a∈(﹣1,3),則|g(a)|∈[0,12)
∴m<12
【解析】(1)若a=1,不等式f(x)≥4為|x+1|+|x﹣1|≥4,分類討論解不等式f(x)≥4(2)對(duì)x∈R,a∈(﹣1,3),使得不等式m<f(x)成立,a∈(﹣1,3),m<|a+a2|,即可得出m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】3個(gè)班分別從5個(gè)風(fēng)景點(diǎn)處選擇一處游覽,不同的選法種數(shù)是( )
A.53
B.35
C.A53
D.C53
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2個(gè)人分別從3部電影中選擇一部電影購(gòu)買電影票,不同的購(gòu)買方式共有( )
A.6
B.9
C.8
D.27
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|3x<16,x∈N},B={x|x2﹣5x+4<0},則A∩(RB)=( )
A.{1,2}
B.{0,1}
C.{0,1,2}
D.{x|0<x<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x3﹣x﹣1的零點(diǎn)所在的區(qū)間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com