12.以下四個(gè)對(duì)應(yīng):
(1)A=N+,B=N+,f:x→|x-3|
(2)A=Z,B=Q,f:x→$\frac{2}{x}$
(3)A=N+,B=R,f:x→x的平方根; 
(4)A=N,B={-1,1,2,-2},f:x→(-1)x
其中能構(gòu)成從A到B的映射的有( 。﹤(gè).
A..1B.2C.3D.4

分析 直接按照映射的概念逐一核對(duì)四個(gè)選項(xiàng)即可得到答案.

解答 解:(1)若對(duì)應(yīng)法則是f:x→|x-3|,x∈A,則原像集合A中元素3在像集B中無(wú)對(duì)應(yīng)元素,不符合映射概念;
(2)若對(duì)應(yīng)法則是f:x→$\frac{2}{x}$,x∈A,則原像集合A中元素0在像集B中無(wú)對(duì)應(yīng)元素,不符合映射概念;
(3)若對(duì)應(yīng)法則是f:x→x的平方根,x∈A,則原像集合A中元素1在像集B中有對(duì)應(yīng)元素±1,不符合映射概念;
(4)若對(duì)應(yīng)法則是f:x→(-1)x,x∈A,原像集合A中的所有元素在像集B中都有唯一確定的對(duì)應(yīng)元素,符合映射概念.
故選:A.

點(diǎn)評(píng) 本題考查了映射的概念,解答的關(guān)鍵是對(duì)概念的理解,是基礎(chǔ)的概念題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)f(x)=e-x-ax2f′(x).若f′(1)=$\frac{1}{e}$,則實(shí)數(shù)a的值等于( 。
A.-1B.1C.eD.$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.比較下列三數(shù)的大小
(1)log30.8,log40.8,log50.8;
(2)1.10.9,log1.10.9,log0.70.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=x+sinx(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時(shí),$\frac{x+y+1}{x+1}$的取值范圍是(  )
A.[$\frac{5}{4}$,$\frac{7}{4}$]B.[0,$\frac{7}{4}$]C.[$\frac{5}{4}$,$\frac{7}{3}$]D.[1,$\frac{7}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖后輸出的S值為( 。
A.$-\sqrt{3}$B.0C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若f(x)是R上的減函數(shù),且f(x)的圖象過(guò)點(diǎn)A(0,3),B(3,-1),則不等式|f(x+t)-1|<2的解集為(-1,2),t的值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.平面內(nèi)有兩個(gè)定點(diǎn)F1(-5,0),F(xiàn)2(5,0),動(dòng)點(diǎn)P滿足|PF1|-|PF2|=6,則動(dòng)點(diǎn)P的軌跡方程是$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1(x≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若直線a∥平面α,則a與平面α的所有直線都( 。
A.平行B.異面C.不相交D.不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax+4在x=-2時(shí)取得極值.
(Ⅰ)求a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,3]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案