【題目】已知橢圓的離心率為,過(guò)頂點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn).

1)求橢圓的方程;

2)若點(diǎn)在橢圓上且滿(mǎn)足,求直線(xiàn)的斜率的值.

【答案】(1);2.

【解析】

(1)因?yàn)?/span>e=,b=1,所以a=2,

故橢圓方程為. 4

(2)設(shè)l的方程為y=kx+1,A(x1,y1),B(x2,y2),M(m,n).

聯(lián)立,解得 (1+4k2)x2+8kx=0,

因?yàn)橹本(xiàn)l與橢圓C相交于兩點(diǎn),所以△=(8k)2>0,所以x1+x2=x1×x2=0,

點(diǎn)M在橢圓上,則m2+4n2=4,∴,化簡(jiǎn)得

x1x2+4y1y2= x1x2+4(kx1+1)(kx2+1)= (1+4k2)x1x2+4k(x1+x2)+4=0,

∴4k·()+4=0,解得k=±.故直線(xiàn)l的斜率k=±.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1) ,求的最小值;

(2) 上單調(diào)遞增,求的取值范圍;

(3) 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P-ABCD中,四邊形ABCD是直角梯形,底面,,,的中點(diǎn).

(1)求證:平面平面

(2)若與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為提高課堂教學(xué)效果,最近立項(xiàng)了市級(jí)課題《高效課堂教學(xué)模式及其運(yùn)用》,其中王老師是該課題的主研人之一,為獲得第一手?jǐn)?shù)據(jù),她分別在甲、乙兩個(gè)平行班采用“傳統(tǒng)教學(xué)”和“高效課堂”兩種不同的教學(xué)模式進(jìn)行教學(xué)實(shí)驗(yàn).為了解教改實(shí)效,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出如圖所示的莖葉圖,成績(jī)大于分為“成績(jī)優(yōu)良”.

1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

2)從甲、乙兩班個(gè)樣本中,成績(jī)?cè)?/span>分以下(不含分)的學(xué)生中任意選取人,求這人來(lái)自不同班級(jí)的概率.

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)上.

(1)求橢圓的方程;

(2)若直線(xiàn)與橢圓相交于兩點(diǎn),問(wèn)軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地某所高中2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2016年和2019年的高考升學(xué)情況,得到如圖所示:則下列結(jié)論正確的(

A.2016年相比,2019年一本達(dá)線(xiàn)人數(shù)有所減少

B.2016年相比,2019年二本達(dá)線(xiàn)人數(shù)增加了1

C.2016年相比,2019年藝體達(dá)線(xiàn)人數(shù)相同

D.2016年相比,2019年不上線(xiàn)的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|2xa|+|x1|

(1)若f1≥2,求實(shí)數(shù)a的取值范圍

(2)若不等式fxx對(duì)任意x[2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】手機(jī)運(yùn)動(dòng)計(jì)步已經(jīng)成為一種新時(shí)尚.某單位統(tǒng)計(jì)了職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

1)求直方圖中a的值,并由頻率分布直方圖估計(jì)該單位職工一天步行數(shù)的中位數(shù);

2)若該單位有職工200人,試估計(jì)職工一天行走步數(shù)不大于13000的人數(shù);

3)在(2)的條件下,該單位從行走步數(shù)大于150003組職工中用分層抽樣的方法選取6人參加遠(yuǎn)足拉練活動(dòng),再?gòu)?/span>6人中選取2人擔(dān)任領(lǐng)隊(duì),求這兩人均來(lái)自區(qū)間(150,170]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校要在一條水泥路邊安裝路燈,其中燈桿的設(shè)計(jì)如圖所示,AB為地面,CD,CE為路燈燈桿,CDAB,∠DCE=,在E處安裝路燈,且路燈的照明張角∠MEN=.已知CD=4mCE=2m.

(1)當(dāng)M,D重合時(shí),求路燈在路面的照明寬度MN

(2)求此路燈在路面上的照明寬度MN的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案