(2012•太原模擬)某高中社團進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次是否開通“微博”的調(diào)查,若開通“微博”的稱為“時尚族”,否則稱為“非時尚族”,通過調(diào)查分別得到如圖所示統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

完成以下問題:
(Ⅰ)補全頻率分布直方圖并求n,a,p的值;
(Ⅱ)從[40,50)歲年齡段的“時尚族”中采用分層抽樣法抽取18人參加網(wǎng)絡(luò)時尚達人大賽,其中選取3人作為領(lǐng)隊,記選取的3名領(lǐng)隊中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X)..
分析:(Ⅰ)根據(jù)所求矩形的面積和為1求出第二組的頻率,然后求出高,畫出頻率直方圖,求出第一組的人數(shù)和頻率從而求出n,由題可知,第二組的頻率以及人數(shù),從而求出p的值,然后求出第四組的頻率和人數(shù)從而求出a的值;
(Ⅱ)因為[40,45)歲年齡段的“時尚族”與[45,50)歲年齡段的“時尚族”的比值為2:1,所以采用分層抽樣法抽取18人,[40,45)歲中有12人,[45,50)歲中有6人,機變量X服從超幾何分布,X的取值可能為0,1,2,3,分別求出相應(yīng)的概率,列出分布列,根據(jù)數(shù)學(xué)期望公式求出期望即可.
解答:解:(Ⅰ)第二組的頻率為1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,
所以高為
0.3
5
=0.06

頻率直方圖如下:

(2分)
第一組的人數(shù)為
120
0.6
=200
,頻率為0.04×5=0.2,所以n=
200
0.2
=1000

由題可知,第二組的頻率為0.3,所以第二組的人數(shù)為1000×0.3=300,
所以p=
195
300
=0.65

第四組的頻率為0.03×5=0.15,所以第四組的人數(shù)為1000×0.15=150,
所以a=150×0.4=60.(5分)
(Ⅱ)因為[40,45)歲年齡段的“時尚族”與[45,50)歲年齡段的“時尚族”的比值
為60:30=2:1,所以采用分層抽樣法抽取18人,[40,45)歲中有12人,[45,50)歲中有6人.(6分)
隨機變量X服從超幾何分布.P(X=0)=
C
0
12
C
3
6
C
3
18
=
5
204
,P(X=1)=
C
1
12
C
2
6
C
3
18
=
15
68
P(X=2)=
C
2
12
C
1
6
C
3
18
=
33
68
,P(X=3)=
C
3
12
C
0
6
C
3
18
=
55
204

所以隨機變量X的分布列為
X 0  1 2 3
P
5
204
15
68
33
68
55
204
(10分)
∴數(shù)學(xué)期望EX=0×
5
204
+1×
15
68
+2×
33
68
+3×
55
204
=2

(或者 EX=
12×3
18
=2
).(12分)
點評:本題主要考查了頻率分布直方圖,離散型隨機變量的分布列和數(shù)學(xué)期望,同時考查了超幾何分布的概念和計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•太原模擬)已知向量
a
=(1,2)
,
b
=(x,4)
,且
a
b
,則x=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•太原模擬)已知向量
a
=(2,4),
b
=(1,1),若向量
b
⊥(λ
a
+
b
),則實數(shù)λ的值是
-
1
3
-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•太原模擬)已知復(fù)數(shù)(a2-4a+3)+(a-1)i是純虛數(shù),(a∈R),則實數(shù)a的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•太原模擬)選修4-1:幾何證明選講
如圖,已知PA與圓O相切于點A,經(jīng)過點O的割線PBC交圓O于點B,C,∠APC的平分線分別交AB,AC于點D,E.
(Ⅰ)證明:∠ADE=∠AED;
(Ⅱ)若AC=AP,求
PCPA
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•太原模擬)已知函數(shù)f(x)=2x+x,g(x)=log2x+x,h(x)=log4x+x的零點依次為a,b,c,則( 。

查看答案和解析>>

同步練習(xí)冊答案