如圖,四棱錐中,底面為平行四邊形,,,⊥底面
 
(1)證明:平面平面;
(2)若二面角,求與平面所成角的正弦值.
(1)證明過程詳見解析;(2).

試題分析:(1)可以遵循思路面面垂直線面垂直線線垂直,即證明面面垂直只需要證明其中一個面里面的一條直線垂直與另外一個面即可,即證明面PDB,線面垂直只需要證明BC與面內相交的兩條直線垂直即可,即BD, PD,前者可有三角形的勾股定理證得,后者由線面垂直得到
(2)求線面夾角可以利用三維空間直角坐標系,分別以DA,DB,PD三條兩兩垂直的直線建立坐標系,求面法向量與直線的夾角的余弦值的絕對值即為線面夾角的余弦值.
試題解析:
(1)∵
又∵⊥底面
又∵平面
平面 ∴平面平面               5分
(1)由(1)所證,平面 ,所以∠即為二面角P-BC-D的平面角,即∠
,所以                    7分
分別以、、軸、軸、軸建立空間直角坐標系.則,,, ,所以,,,設平面的法向量為,則,即可解得與平面所成角的正弦值為           12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖長方體中,底面ABCD是邊長為1的正方形,E為延長線上的一點且滿足.
(1)求證:平面;
(2)當為何值時,二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長方體ABCDA1B1C1D1中,,點E是棱AB上一點.且

(1)證明:;
(2)若二面角D1ECD的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,幾何體中,為邊長為的正方形,為直角梯形,,,,

(1)求異面直線所成角的大。
(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐,底面是等腰梯形,
,中點,平面,
, 中點.

(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐P—ABCD的底面是邊長為2的菱形,∠DAB=60°,側棱,,M、N兩點分別在側棱PB、PD上,.

(1)求證:PA⊥平面MNC。
(2)求平面NPC與平面MNC的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長為1的正方形,E、F分別是棱B1B、DA的中點.
(1)求二面角D1-AE-C的大;
(2)求證:直線BF∥平面AD1E.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在圓錐PO中,已知PO=,☉O的直徑AB=2,C是的中點,D為AC的中點.

求證:平面POD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線的方向向量為,平面的法向量為,則能使//的是(    )
A.=,=
B.=,=
C.==
D.=,=

查看答案和解析>>

同步練習冊答案