【題目】在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一點,且 =5,則| |等于(
A.2
B.4
C.6
D.1

【答案】A
【解析】解:∵在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一點,且 =5, 作圖如下:

設(shè) =k
= + =﹣ +k ,
= (﹣ +k )=﹣| || |cos60°+k =﹣5×4× +25k=5,
解得:k= ,
∴| |=5× =3,
∴| |=5﹣3=2.
故選:A.
依題意,作出圖形,設(shè) =k ,利用三角形法則可知 = + =﹣ +k ,再由 =5可求得k,從而可求得| |的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點B與點A(﹣1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于﹣
(1)求動點P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過村莊A有兩條夾角60°為的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M,N(異于村莊A),要求PM=PN=MN=2(單位:千米).記∠AMN=θ.
(1)將AN,AM用含θ的關(guān)系式表示出來;
(2)如何設(shè)計(即AN,AM為多長時),使得工廠產(chǎn)生的噪聲對居民的影響最。垂S與村莊的距離AP最大)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知h(x)=|2x﹣1|+m|x+3|(m>0),且h(x)的最小值是7. (Ⅰ)求m的值;
(Ⅱ)求出當h(x)取得最小值時x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,直線y= x(a≠0)為曲線y=f(x)的一條切線.
(1)求實數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣bx2為增函數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數(shù)列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數(shù)列{an}及{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列選項中說法正確的是(
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量 滿足 ,則 的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且 .則使得sin2B+sin2C=msinBsinC成立的實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知三點O(0,0),A(2, ),B(2 , ).
(1)求經(jīng)過O,A,B的圓C1的極坐標方程;
(2)以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,圓C2的參數(shù)方程為 (θ是參數(shù)),若圓C1與圓C2外切,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案