已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
與拋物線C2:y2=2px(p>0)有相同焦點,若雙曲線C1與拋物線C2的一個公共點為P,且點P到拋物線的準線的距離為p,則雙曲線的離心率為( 。
A、
2
+1
B、
2
C、2
D、2+
2
考點:拋物線的簡單性質,雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:由題意,可得P(
p
2
,p),p=2c,P代入C1
x2
a2
-
y2
b2
=1(a>0,b>0)
,即可求出雙曲線的離心率.
解答: 解:由題意,可得P(
p
2
,p),p=2c
P代入C1
x2
a2
-
y2
b2
=1(a>0,b>0)
可得
p2
4a2
-
p2
b2
=1

4c2
4a2
-
4c2
c2-a2
=1
,
∴e=
c
a
=
2
+1.
故選:A.
點評:本題考查雙曲線的離心率的求法,解題時要熟練掌握雙曲線和拋物線的簡單性質,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓x2+(y-1)2=1關于P(1,2)對稱的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f1(x)=lg(-x-1)的定義域為M,函數(shù)f2(x)=lg(x-3)的定義域為N,A=N∪M,函數(shù)g(x)=2x-a(x≤2)的值域為B.
(1)求A、B;
(2)若函數(shù)A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,若橢圓上存在點A,使∠F1AF2=90°且|AF1|=3|AF2|,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x∈R均有f(x-1)=f(x+1),當x∈[0,1)時,f(x)=2x-1,則f(log
1
2
6
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某個幾何體的三視圖如圖,根據(jù)圖中標出的尺寸,可得這個幾何體的表面積是( 。
A、
3
2
B、7+
2
C、7+2
2
D、10+
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖為一個四棱錐的正視圖、側(左)視圖和俯視圖,則該四棱錐的表面積為( 。
A、3
B、2+
2
C、2
D、3+2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a≤0”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(0,+∞)內單調遞增”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且A=
3
,b=3,△ABC的面積為
15
3
4

(1)求邊c的長;
(2)求cos2B的值.

查看答案和解析>>

同步練習冊答案