f(x)=(x-k)2e 
x
k
,求導f′(x)=
 
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)復合函數(shù)的導數(shù)公式進行求導即可.
解答: 解:函數(shù)的f(x)的導數(shù)f′(x)=2(x-k)e 
x
k
+(x-k)2e 
x
k
1
k
=(x-k)e 
x
k
x+k
k

=
1
k
(x2-k2)e 
x
k
,
故答案為:
1
k
(x2-k2)e 
x
k
點評:本題主要考查導數(shù)的計算,利用復合函數(shù)的導數(shù)公式和運算法則是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

f(x)滿足對一切實數(shù),恒有f(x)+f(-x)=x2且在(-∞,0)上單調(diào)遞增,若f(2-a)-f(a)>2-2a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱錐的側(cè)棱長為2
3
,側(cè)棱與底面所成角為60°,則該四棱錐的高為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知AD,CE分別是△ABC的邊BC,AB的中線,且
AD
=
a
,
CE
=
b
,則
AC
=
 
(用
a
,
b
表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a:b:c=2:4:5,求
2sinB
3sinC-5sinA
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在實數(shù)集R上奇函數(shù)f(x)的最小正周期為20,在區(qū)間(0,10)內(nèi)方程f(x)=0有且僅有一個解x=3,則方程f(
x
4
+3)=0在[-100,400]上不同的解的個數(shù)為(  )
A、20B、25C、26D、27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中點,F(xiàn)是AB的中點.
(Ⅰ) 求證:BE∥平面PDF;
(Ⅱ)求證:平面PDF⊥平面PAB;
(Ⅲ)求平面PAB與平面PCD所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(0,2π)上滿足
tan2x
=-tanx的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|x2-2x-3>0},Q={x|log2(x-2)<1},則(∁RP)∩Q=( 。
A、{x|2<x≤3}
B、{x|-1≤x≤3}
C、{x|3<x≤4}
D、{x|3<x≤4或x<-1}

查看答案和解析>>

同步練習冊答案