分析 x、y∈R+,且滿足$\frac{1}{x}$+$\frac{2}{y}$=4,可得8x+y=$\frac{1}{4}(\frac{1}{x}+\frac{2}{y})$(8x+y)=$\frac{1}{4}$(10+$\frac{16x}{y}+\frac{y}{x}$),利用基本不等式的性質(zhì)即可得出.
解答 解:∵x、y∈R+,且滿足$\frac{1}{x}$+$\frac{2}{y}$=4,
則8x+y=$\frac{1}{4}(\frac{1}{x}+\frac{2}{y})$(8x+y)=$\frac{1}{4}$(10+$\frac{16x}{y}+\frac{y}{x}$)≥$\frac{1}{4}(10+2\sqrt{\frac{16x}{y}•\frac{y}{x}})$=$\frac{9}{2}$,當且僅當y=4x=$\frac{3}{2}$時取等號.
∴8x+y的取值范圍是$[\frac{9}{2},+∞)$.
故答案為:$[\frac{9}{2},+∞)$.
點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0°<α<45° | B. | 45°<α<90° | C. | 90°<α<135° | D. | 135°<α<180° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆寧夏高三上月考一數(shù)學(理)試卷(解析版) 題型:解答題
設函數(shù)(且,),是定義域是的奇函數(shù).
(1)求的值,判斷并證明當時,函數(shù)在上的單調(diào)性;
(2)已知,函數(shù),,求的值域;
(3)已知,若對于時恒成立,請求出最大的整數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com