已知?jiǎng)訄A過(guò)定點(diǎn)A(4,0),且在y軸上截得的弦MN的長(zhǎng)為8.

(1)求動(dòng)圓圓心的軌跡C的方程.

(2)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線(xiàn)l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線(xiàn),證明直線(xiàn)l過(guò)定點(diǎn).

【解題提示】(1)由弦長(zhǎng)的一半、半徑和弦心距構(gòu)成直角三角形列出方程,化簡(jiǎn)后得出軌跡C的方程.

(2)直線(xiàn)過(guò)定點(diǎn)可抓住該題的關(guān)鍵:x軸是∠PBQ的角平分線(xiàn),即kQB+kPB=0解之.

【解析】(1)A(4,0),設(shè)圓心C(x,y),線(xiàn)段MN的中點(diǎn)為E,由幾何圖象知ME=,CA2=CM2=ME2+EC2⇒(x-4)2+y2=42+x2⇒y2=8x.

(2)設(shè)直線(xiàn)l的方程為y=kx+b,聯(lián)立

得k2x2+2kbx+b2=8x,

k2x2-(8-2kb)x+b2=0(其中Δ>0),

設(shè)P(x1,kx1+b),Q(x2,kx2+b),

則x1+x2=,

x1x2=,

若x軸是∠PBQ的角平分線(xiàn),則

kPB+kQB=+

=

===0即k=-b,

故直線(xiàn)l的方程為y=k(x-1),直線(xiàn)l過(guò)定點(diǎn)(1,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試陜西卷理數(shù) 題型:044

已知?jiǎng)訄A過(guò)定點(diǎn)A(4,0),且在y軸上截得的弦MN的長(zhǎng)為8.

(Ⅰ)求動(dòng)圓圓心的軌跡C的方程;

(Ⅱ)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線(xiàn)l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線(xiàn),證明直線(xiàn)l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(陜西卷解析版) 題型:解答題

已知?jiǎng)訄A過(guò)定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長(zhǎng)為8.

(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;

(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線(xiàn)l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線(xiàn), 證明直線(xiàn)l過(guò)定點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄A過(guò)定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長(zhǎng)為8.

(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;

(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線(xiàn)與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線(xiàn), 證明直線(xiàn)過(guò)定點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄A過(guò)定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長(zhǎng)為8.

   (Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;

   (Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線(xiàn)l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線(xiàn), 證明直線(xiàn)l過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案