6.已知兩單位向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,若$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrowyjtmv0u$=3$\overrightarrow$-$\overrightarrow{a}$,試求|$\overrightarrow{c}$+$\overrightarrow1braibc$|.

分析 由已知求出$\overrightarrow{a}•\overrightarrow$,并且得到$\overrightarrow{c}+\overrightarrowybkuwpb=\overrightarrow{a}+2\overrightarrow$,求出$|\overrightarrow{c}+\overrightarrowosbt0o1{|}^{2}$得答案.

解答 解:由題意,$|\overrightarrow{a}|=|\overrightarrow|=1$,$\overrightarrow{a}•\overrightarrow=|\overrightarrow{a}||\overrightarrow|cos120°=-\frac{1}{2}$,
又$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrowr4kbdnv$=3$\overrightarrow$-$\overrightarrow{a}$,∴$\overrightarrow{c}+\overrightarrow0tj71pw=\overrightarrow{a}+2\overrightarrow$,
則|$\overrightarrow{c}$+$\overrightarrowb0eewib$|=$|\overrightarrow{a}+2\overrightarrow|=\sqrt{(\overrightarrow{a}+2\overrightarrow)^{2}}=\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}}$=$\sqrt{1+4×(-\frac{1}{2})+4×1}=\sqrt{3}$.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了向量模的求法,掌握$|\overrightarrow{a}{|}^{2}={\overrightarrow{a}}^{2}$是關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足Sn=n2-n.
(1)求an
(2)設(shè)數(shù)列{bn}滿(mǎn)足bn+1=2bn-an且b1=4,證明:數(shù)列{bn-2n}是等比數(shù)列,求{bn}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中以原點(diǎn)O為極點(diǎn)以x軸為正半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0.
(Ⅰ)求曲線C的普通方程;
(Ⅱ)設(shè)點(diǎn)P(x,y)是曲線C上任意一點(diǎn),求xy的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的首項(xiàng)為2,前n項(xiàng)和為Sn,且$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$(n∈N*).
(1)求a2的值;
(2)設(shè)bn=$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$,求數(shù)列{bn}的通項(xiàng)公式;
(3)若am,ap,ar(m,p,r∈N*,m<p<r)成等比數(shù)列,試比較p2與mr的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合P={y|y≥0},且P⊆Q,則集合Q不可能是  (  )
A.{y|y=x2-1}B.{y|y=2x}C.{y|y=lgx}D.{y|y=x2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)全集U={1,2,3,4,5},A={x|x2-5x+q=0},則∁UA={1,2,3,4,5},或{2,3,5},或{1,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-2,(n≥1,n∈N),數(shù)列{bn}中,b1=1,b2=3,2bn+1=bn+bn+2,(n≥1,n∈N)
(1)求an和bn;
(2)令Tn=$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$,是否存在正整數(shù)M使得Tn<M對(duì)一切正整數(shù)n都成立?若存在,求出M的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)令cn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,證明:$\frac{n}{2}$-$\frac{1}{3}$<c1+c2+…+cn<$\frac{n}{2}$,(n≥1,n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x2-ax-alnx(a∈R),$g(x)=-{x^3}+\frac{5}{2}{x^2}+2x-6$
(1)若f(x)的一個(gè)極值點(diǎn)為1,求a的值;
(2)設(shè)g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時(shí),f(x)≥b恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知F1,F(xiàn)2分別是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn),P是橢圓E上的點(diǎn),且PF2⊥x軸,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=\frac{1}{16}{a^2}$.直線l經(jīng)過(guò)F1,與橢圓E交于A,B兩點(diǎn),F(xiàn)2與A,B兩點(diǎn)構(gòu)成△ABF2
(1)求橢圓E的離心率;
(2)設(shè)△F1PF2的周長(zhǎng)為$2+\sqrt{3}$,求△ABF2的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案