【題目】已知某公司生產(chǎn)一種品牌服裝的年固定成本為10萬元,且每生產(chǎn)1萬件,需要另投入1.9萬元.設(shè)R(x)(單位:萬元)為銷售收入,根據(jù)市場(chǎng)調(diào)查知R(x)= 其中x(單位:萬件)是年產(chǎn)量.
(1)寫出年利潤(rùn)W(單位:萬元)關(guān)于年產(chǎn)量x的函數(shù)解析式.
(2)當(dāng)年產(chǎn)量為多少時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大?
【答案】(1)見解析(2)9
【解析】
(1)依據(jù)利潤(rùn)的計(jì)算方法,即利潤(rùn)=銷售收入﹣投入,直接寫出年利潤(rùn)函數(shù)即可.
(2)分類討論:當(dāng)0≤x≤10時(shí);當(dāng)x>10時(shí),分別求出分段上各個(gè)函數(shù)的最大值,最后綜合得出當(dāng)年產(chǎn)量為多少萬件,公司所獲得的利潤(rùn)最大即可.
解:(1)依題意有,W=
(2) 當(dāng)0≤x≤10時(shí),∵W(x)=∴W′(x)=
令W′(x)=0,解得x=9.
若0≤x<9,則W′(x)>0;若9<x≤10,則W′(x)<0,
∴W(x)的最大值為W(9)=38.6.
當(dāng)x>10時(shí),W(x)=.
綜上可知,當(dāng)x=9時(shí)W(x)的最大值為W(9)=38.6
答:當(dāng)年產(chǎn)量為9萬件,公司所獲得的利潤(rùn)最大
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表數(shù)據(jù)是水的溫度x(℃)對(duì)黃酮延長(zhǎng)性y(%)效應(yīng)的試驗(yàn)結(jié)果,y是以延長(zhǎng)度計(jì)算的.
x/℃ | 300 | 400 | 500 | 600 | 700 | 800 |
y/% | 40 | 50 | 55 | 60 | 67 | 70 |
(1)畫出散點(diǎn)圖;
(2)指出x,y是否線性相關(guān),若線性相關(guān),求y關(guān)于x的回歸方程;
(3)估計(jì)水的溫度是1000 ℃時(shí),黃酮延長(zhǎng)性的情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌豆腐食品是經(jīng)過A,B,C三道工序加工而成的,A,B,C工序的產(chǎn)品合格率分別為,,.已知每道工序的加工都相互獨(dú)立,三道工序加工的產(chǎn)品都合格時(shí)產(chǎn)品為一等品;恰有兩次合格為二等品;其他的為廢品,不進(jìn)入市場(chǎng).
(1)生產(chǎn)一袋豆腐食品,求產(chǎn)品為廢品的概率;
(2)生產(chǎn)一袋豆腐食品,設(shè)X為三道加工工序中產(chǎn)品合格的工序數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在上學(xué)期依次舉行了“法律、環(huán)保、交通”三次知識(shí)競(jìng)賽活動(dòng),要求每位同學(xué)至少參加一次活動(dòng).該高校2014級(jí)某班50名學(xué)生在上學(xué)期參加該項(xiàng)活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示.
(1)從該班中任意選兩名學(xué)生,求他們參加活動(dòng)次數(shù)不相等的概率.
(2)從該班中任意選兩名學(xué)生,用ξ表示這兩人參加活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.
(3)從該班中任意選兩名學(xué)生,用η表示這兩人參加活動(dòng)次數(shù)之和,記“函數(shù)f(x)=x2﹣ηx﹣1在區(qū)間(3,5)上有且只有一個(gè)零點(diǎn)”為事件A,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),P為橢圓上的一點(diǎn),已知P,F(xiàn)1,F(xiàn)2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-aln x(a∈R).
(1)若f(x)在x=2處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)求證:當(dāng)x>1時(shí), x2+ln x<x3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),且AB=AD,BC=DC.
(1)求證:∥平面EFGH;
(2)求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,設(shè)當(dāng)箭頭a指向①處時(shí),輸出的S的值為m,當(dāng)箭頭a指向②處時(shí),輸出的S的值為n,則m+n=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com