【題目】如圖,AB是圓O的直徑,點(diǎn)C在圓O上,矩形DCBE所在的平面垂直于圓O所在的平面, , .
(1)若,求三棱錐的體積;
(2)證明:平面ACD⊥平面BCDE;
【答案】(1)(2)見(jiàn)解析
【解析】試題分析:(1)求體積關(guān)鍵求高:由面面垂直性質(zhì)定理可得,再根據(jù)錐體體積公式求體積(2)由圓性質(zhì)得,再根據(jù)面面垂直性質(zhì)定理可得AC,最后根據(jù)面面垂直判定定理得結(jié)論
試題解析:(Ⅰ)在矩形DCBE中, ,
又
因AB是圓O的直徑,點(diǎn)C在圓O上,
(Ⅱ)由(Ⅰ)知,又
又
又
點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見(jiàn)類(lèi)型.
(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.
(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.
(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°.側(cè)面PAD為正三角形,且平面PAD⊥平面ABCD,則下列說(shuō)法錯(cuò)誤的是( )
A.在棱AD上存在點(diǎn)M,使AD⊥平面PMB
B.異面直線AD與PB所成的角為90°
C.二面角P﹣BC﹣A的大小為45°
D.BD⊥平面PAC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題錯(cuò)誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線與圓交于M、N兩點(diǎn),且M、N關(guān)于直線對(duì)稱(chēng).
(1)求m,k的值;
(2)若直線與圓C交P,Q兩點(diǎn),是否存在實(shí)數(shù)a使得OP⊥OQ,如果存在,求出a的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣ +bx+c與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個(gè)數(shù)據(jù)的中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2-2x+4y-4=0,
(1)求圓C關(guān)于直線對(duì)稱(chēng)的圓的方程;
(2)問(wèn)是否存在斜率為1的直線l,使l被圓C截得弦AB,且以AB為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出直線l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對(duì)應(yīng)值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表格中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(2)根據(jù)畫(huà)出的函數(shù)圖象,寫(xiě)出:
①x=4對(duì)應(yīng)的函數(shù)值y約為
②該函數(shù)的一條性質(zhì):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和Sn滿足:2Sn=3an﹣6n(n∈N*) (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,其中常數(shù)λ>0,若數(shù)列{bn}為遞增數(shù)列,求λ的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com