13.如圖是七位評委為甲、乙兩名比賽歌手打出的分數(shù)的莖葉圖(其中m為數(shù)字0-9中的一個),甲、乙兩名選手得分的平均數(shù)分別為a1,a2,若a1=a2,則m=(  )
A.6B.5C.4D.3

分析 根據樣本平均數(shù)的計算公式,代入數(shù)據得甲和乙的平均分,列出方程解出即可.

解答 解:由題意得:
79+84×5+90+m=77+85×5+93,
解得:m=6,
故選:A.

點評 本題考查莖葉圖:當數(shù)據是兩位有效數(shù)字時,用中間的數(shù)字表示十位數(shù),即第一個有效數(shù)字,兩邊的數(shù)字表示個位數(shù),即第二個有效數(shù)字,它的中間部分像植物的莖,兩邊部分像植物莖上長出來的葉子,因此通常把這樣的圖叫莖葉圖.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,A=30°,c=$\sqrt{3}$,a=1,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知等差數(shù)列{an}的前n項和為Sn,a1=-11,a4+a7=-4,Sn取得最小值時n的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.求z=$\frac{2}{{(1+i{)^2}}}$的值為(  )
A.-iB.iC.$\frac{i}{2}$D.$-\frac{i}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,a、b、c分別是∠A、B、C對應的邊長.若cosA+sinA-$\frac{2}{cosB+sinB}$=0,則$\frac{a+b}{c}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設向量$\vec a$=(-l,2),$\vec b$=(2,1),則$\vec a$-$\vec b$與$\vec b$的夾角為( 。
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在正三棱柱ABC-A1B1C1(底面為正三角形且側棱垂直于底面的三棱柱)中,底面邊長AB=3,側棱AA1=4,AC1與A1C相交于點E,點D是BC的中點.
(Ⅰ)求證:AD⊥C1D;
(Ⅱ)求證:AB∥平面ADC1;
(Ⅲ)求三棱錐C-ABB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知兩定點A(-1,0),B(1,0),動點M滿足|AM|=4,線段MB的垂直平分線與線段AM相交于點N,設點N的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設動直線l與曲線C交于P,Q兩點,且OP⊥OQ(其中O為坐標原點),試問:是否存在定圓x2+y2=r2(r>0),使得該圓恒與直線l相切?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(1,cosα),$\overrightarrow$=($\frac{1}{3}$,sinα).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\frac{cosα-sinα}{\sqrt{2}sin(α+\frac{π}{4})}$的值;
(2)若$\overrightarrow{a}$⊥$\overrightarrow$,cos(α+β)=-$\frac{12}{13}$且α、β∈($\frac{π}{2}$,$\frac{3π}{4}$),求sin(β-α)的值.

查看答案和解析>>

同步練習冊答案