已知lga+lgb=0(a>1)在同一坐標(biāo)系中,函數(shù)y=ax與y=logbx的圖象是下圖中的( 。
分析:由lga+lgb=0(a>1),知ab=1,a>1,0<b<1,故y=ax的圖象單調(diào)遞增,y=logbx的圖象單調(diào)遞減,由此能夠求出結(jié)果.
解答:解:∵lga+lgb=0(a>1),
∴ab=1,a>1,0<b<1,
∴y=ax的圖象單調(diào)遞增,y=logbx的圖象單調(diào)遞減,
結(jié)合四個(gè)選項(xiàng)所給的圖象,知C符合題意,
故選C.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的圖象和性質(zhì),是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知lga+lgb=0,函數(shù)f(x)=ax與函數(shù)g(x)=-logbx的圖象可能是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lga+lgb=0,則
b
1+a2
+
a
1+b2
的最小值是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lga+lgb=2lg(a-2b),求log2a-log2b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求2(lg
2
2+lg
2
•lg5+
(lg
2
)2-lg2+1
-
3
a9
a-3
÷
3
a13
a7
  (a>0)的值;
(2)已知lga+lgb=2lg(a-2b),求
a
b
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(選修4-4坐標(biāo)系與參數(shù)方程)
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,則極點(diǎn)到該直線的距離是
2
2
2
2

(2)(選修4-5 不等式選講)
已知lga+lgb=0,則滿足不等式
a
a2+1
+
b
b2+1
≤λ
的實(shí)數(shù)λ的范圍是
[1,+∞)
[1,+∞)

(3)(選修4-1 幾何證明選講)
如圖,兩個(gè)等圓⊙O與⊙O′外切,過O作⊙O′的兩條切線OA,OB,A,B是切點(diǎn),點(diǎn)C在圓O′上且不與點(diǎn)A,B重合,則∠ACB=
60°
60°

查看答案和解析>>

同步練習(xí)冊(cè)答案