“α=β+2kπ(k∈Z)”是“tanα=tanβ”的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分又不必要
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)三角函數(shù)的性質(zhì),結(jié)合充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若α=β=
π
2
,滿足α=β+2kπ(k∈Z,但此時(shí)tanα,tanβ無(wú)意義,即tanα=tanβ不成立,即充分性不成立,
若tanα=tanβ,則α=β+kπ(k∈Z),當(dāng)k為奇數(shù)時(shí),α=β+2kπ(k∈Z)不成立,即必要性不成立,
則“α=β+2kπ(k∈Z)”是“tanα=tanβ”的既不充分又不必要,
故選:D
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)正切函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

焦點(diǎn)坐標(biāo)為(-2,0)的拋物線的標(biāo)準(zhǔn)方程為( 。
A、y2=4x
B、y2=8x
C、y2=-4x
D、y2=-8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足約束條件
y≤0
x-2y-1≥0
x-4y-3≤0
,則z=3x+5y的取值范圍是( 。
A、[3,+∞)
B、[-8,3]
C、(-∞,9]
D、[-8,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知隨機(jī)變量ξ服從正態(tài)分布N(1,4),若P(ξ>2)=a,則P(0<ξ<1)=( 。
A、a
B、1-a
C、2a-1
D、
1
2
-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三角形的中心與三個(gè)頂點(diǎn)連線所成的三個(gè)張角相等,其余弦值為-
1
2
,類似地正四面體的中心與四個(gè)頂點(diǎn)連線所成的四個(gè)張角也相等,其余弦值為(  )
A、-
1
2
B、-
1
3
C、-
1
4
D、-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論中正確的是( 。
A、lgx+
1
lgx
的最小值為2
B、
x
+
1
x
的最小值為2
C、sin2x+
4
sin2x
的最小值為4
D、當(dāng)0<x≤2時(shí),x-
1
x
無(wú)最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若a1=5,an+1=an-
5
7
(n∈N*),則使得Sn最大的n的值為(  )
A、7B、8C、7或8D、8或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y,z∈R+,且x+4y+9z=1,則
1
x
+
1
y
+
1
z
的最小值是(  )
A、9B、16C、36D、81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛(ài)我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如圖所示部分頻率分布直方圖.觀察圖形給出的信息,回答下列問(wèn)題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(3)若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案