郵局門口前有4個(gè)郵筒,現(xiàn)有3封信逐一投入郵筒,共有多少種不同的投法?
考點(diǎn):分步乘法計(jì)數(shù)原理
專題:應(yīng)用題,二項(xiàng)式定理
分析:每封信都有4種選擇,而且可以都投入一個(gè)郵筒,利用乘法原理可得結(jié)論.
解答: 解:∵每封信都有4種投法,
∴不同的投法有4×4×4=64種.
故有64種不同的投法.
點(diǎn)評:本題主要考查了分步計(jì)數(shù)原理的應(yīng)用,要注意結(jié)論:m個(gè)物品放到n個(gè)不同的位置的方法有nm,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=-
1
2
x2+
a
2
x-
3
2

(Ⅰ)求f(x)在[t,t+1](0<t<
1
e
)上的最小值;
(Ⅱ)在函數(shù)f(x)與g(x)的公共定義域內(nèi)f(x)的圖象在g(x)圖象的上方,求實(shí)數(shù)a的范圍;
(Ⅲ)a=2時(shí),曲線h(x)=
f(x)
x
-2g(x)的圖象上是否存在兩點(diǎn)A,B,使
AB
∥m(設(shè)線段AB的中點(diǎn)橫坐標(biāo)為x0,函數(shù)h(x)在x=x0處的切線的方向向量為m)?若存在,求出直線AB的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,向量
m
=(-cosBcosC,1),
n
=(1,sinBsinC-
3
2
),且
m
n

(1)求cosB+sinC的取值范圍;
(2)先給出下列三個(gè)條件:①a=1,②2c-(
3
+1)b=0,③B=
π
4
,試從中選擇兩個(gè)條件確定△ABC,并求出所確定的△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是(  )
A、20B、21
C、200D、210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為二次函數(shù),且滿足f(1)=1,f(x)有兩個(gè)零點(diǎn)為0和2,設(shè)F(x)=
f(x),x≥0
f(-x),x<0

(1)求函數(shù)f(x)和F(x)的解析式;
(2)在答卷給定的坐標(biāo)系中畫出函數(shù)F(x)的圖象;(不需列表)
(3)根據(jù)圖象討論關(guān)于x的方程F(x)-k=0(k∈R)根的個(gè)數(shù)(只需寫出結(jié)果,不要解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
x→0
x-sinx
x2(ex-1)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
x→0
arctanx-x
ln(1+2x3)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且Sn=
an(an+1)
2
(n∈N*),
(Ⅰ)求證數(shù)列{an}是等差數(shù)列;
(Ⅱ)設(shè)bn=
1
Sn
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

扣人心弦的巴西足球世界杯已落下了帷幕,為了解市民對該世界杯的關(guān)注情況,某市足球協(xié)會針對該市市民組織了一次隨機(jī)調(diào)查,下面是調(diào)查中的一個(gè)方面.
 看直播看轉(zhuǎn)播不看
男性480m180
女性24015090
現(xiàn)按類型用分層抽樣的方法從上述問卷中抽取50份問卷,其中屬“看直播”的問卷有24份.
(1)求m的值;
(2)該市足球協(xié)會決定從所調(diào)查的看直播的720名市民中,仍用分層抽樣的方法隨機(jī)抽取6人進(jìn)行座談啊,再從6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)禮品,試求2人至少有1人是女性的概率.

查看答案和解析>>

同步練習(xí)冊答案