已知點P是橢圓
+
=1上的一點,F(xiàn)
1、F
2是橢圓的兩個焦點,∠F
1PF
2=60°,則△F
1PF
2的面積是______.
∵P是橢圓
+
=1上的一點,F(xiàn)
1、F
2是橢圓的兩個焦點,∠F
1PF
2=60°,
∴|PF
1|+|PF
2|=4
,|F
1F
2|=2
,
在△F
1PF
2中,由余弦定理得:
|F1F2|2=
|PF1|2+
|PF2|2-2|PF
1|•|PF
2|cos∠F
1PF
2
=
(|PF1|+|PF2|)2-2|PF
1|•|PF
2|-2|PF
1|•|PF
2|cos60°
=32-2|PF
1|•|PF
2|-2|PF
1|•|PF
2|×
=32-3|PF
1|•|PF
2|=20,
∴|PF
1|•|PF
2|=4,
∴
S△F1PF2=
|PF
1|•|PF
2|sin60°=
×4×
=
.
故答案為:
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知點P是橢圓C:
+=1上的動點,F(xiàn)
1,F(xiàn)
2分別為左、右焦點,O為坐標原點,則
的取值范圍是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知點P是橢圓
+
=1上的一點,F(xiàn)
1、F
2是橢圓的兩個焦點,∠F
1PF
2=60°,則△F
1PF
2的面積是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2013•鹽城一模)已知F
1、F
2分別是橢圓
+=1的左、右焦點,點P是橢圓上的任意一點,則
的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點P是橢圓C:
+=1上的動點,F(xiàn)
1,F(xiàn)
2分別為左、右焦點,O為坐標原點,則
的取值范圍是( 。
查看答案和解析>>