A. | 3$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{6}$ | D. | 2$\sqrt{3}$ |
分析 根據正六棱柱和球的對稱性,球心O必然是正六棱柱上下底面中心連線的中點,作出過正六棱柱的對角面的軸截面即可得到正六棱柱的底面邊長、高和球的半徑的關系,在這個關系下求函數(shù)取得最值的條件即可求出所要求的量.
解答 解:以正六棱柱的最大對角面作截面,如圖.設球心為O,正六棱柱的上下底面中心分別為O1,O2,則O是O1,O2的中點.設正六棱柱的底面邊長為a,高為2h,則a2+h2=9.正六棱柱的體積為V=$6×\frac{\sqrt{3}}{4}{a}^{2}×2h$=$3\sqrt{3}(9-{h}^{2})h$,則V′=3$\sqrt{3}$(9-3h2),
得極值點h=$\sqrt{3}$,不難知道這個極值點是極大值點,也是最大值點.故當正六棱柱的體積最大,其高為2$\sqrt{3}$.
故選:D.
點評 本題是在空間幾何體、導數(shù)的應用交匯處命制,解題的關鍵是建立正六棱柱體積的函數(shù)關系式.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(1+\sqrt{2}){m^2}$ | B. | $(1+2\sqrt{2}){m^2}$ | C. | $(2+\sqrt{2}){m^2}$ | D. | $(2+2\sqrt{2}){m^2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{10}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-1,-\frac{7}{8})$ | B. | (0,+∞) | C. | (-∞,0) | D. | $(1,\frac{6}{5})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 16 | C. | $4(1+\sqrt{3})$ | D. | $4(1+\sqrt{2})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com