【題目】下面四個命題:其中所有正確命題的序號是_________

①函數(shù)的最小正周期為;

②在中,若,則一定是鈍角三角形;

③函數(shù)的圖象必經(jīng)過點(3,2);

④若命題是假命題,則實數(shù)的取值范圍為;

的圖象向左平移個單位,所得圖象關于軸對稱.

【答案】②③④

【解析】

①:根據(jù)周期的定義,結(jié)合正弦的誘導公式進行判斷即可;

②:根據(jù)平面向量數(shù)量積的定義,結(jié)合三角形內(nèi)角的取值范圍進行判斷即可;

③:根據(jù)對數(shù)的運算性質(zhì)進行判斷即可;

④:根據(jù)命題的否定與原命題的真假關系進行判斷即可;

⑤:先利用輔助角公式把函數(shù)的解析式化簡成余弦型函數(shù)解析式的形式,根據(jù)平移規(guī)律求出平行后的解析式,再判斷是否是偶函數(shù)進行判斷即可.

①:當時,,,所以函數(shù)的最小正周期為是錯誤的,故本命題是假命題;

②:

,因此一定是鈍角三角形,故本命題是真命題;

③:因為當時,,所以函數(shù)的圖象必經(jīng)過點(3,2),故本命題是真命題;

④:命題是假命題,因此它的否定是真命題,即

是真命題,因此要想該命題是真命題,只需,故本命題是真命題;

⑤:,該函數(shù)的圖象向左平移個單位后,得到函數(shù),而是奇函數(shù)關于原點對稱,不關于關于軸對稱,故本命題是假命題.

故答案為:②③④

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學家洛薩克拉茨在1950年世界數(shù)學家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復這樣的運算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運算后得到1,則的值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下關于圓錐曲線的命題中:

①雙曲線與橢圓有相同焦點;

②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準線是相切的;

③設、為兩個定點,為常數(shù),若,則動點的軌跡為雙曲線;

④過拋物線的焦點作直線與拋物線相交于、,則使它們的橫坐標之和等于5的直線有且只有兩條;

以上命題正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中不正確的個數(shù)是(

①若直線上有無數(shù)個點不在平面內(nèi),則;

②和兩條異面直線都相交的兩條直線異面;

③如果兩條平行直線中的一條與一個平面平行,那么另一條也與這個平面平行;

④一條直線和兩條異面直線都相交,則它們可以確定兩個平面.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若函數(shù)存在唯一的零點,且,則的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》(第三季)亮點頗多,在“人生自有詩意”的主題下,十場比賽每場都有一首特別設計的開場詩詞在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《沁園春·長沙》、《蜀道難》、《敕勒歌》、《游子吟》、《關山月》、《清平樂·六盤山》排在后六場,且《蜀道難》排在《游子吟》的前面,《沁園春·長沙》與《清平樂·六盤山》不相鄰且均不排在最后,則后六場的排法有__________種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線的對稱軸上一點的直線與拋物線相交于M、N兩點,自M、N向直線作垂線,垂足分別為、

)當時,求證:;

)記、、的面積分別為、、,是否存在,使得對任意的,都有成立.若存在,求值;若不在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案