【題目】已知函數(shù),在點處的切線方程為,求(1)實數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.
【答案】(1)(2)
【解析】試題分析:(1)由題已知點處的切線方程,可獲得兩個條件;即:點
再函數(shù)的圖像上,令點處的導數(shù)為切線斜率?傻脙蓚方程,求出的值
(2)由(1)已知函數(shù)的解析式,可運用導數(shù)求出函數(shù)的單調(diào)區(qū)間和最值。即:
為函數(shù)的增區(qū)間,反之為減區(qū)間。最值需求出極值與區(qū)間端點值比較而得。
試題解析:(1)因為在點處的切線方程為,所以切線斜率是,
且,求得,即點,
又函數(shù),則
所以依題意得,解得
(2)由(1)知,所以
令,解得,當;當
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
又,所以當x變化時,f(x)和f′(x)變化情況如下表:
X | 0 | (0,2) | 2 | (2,3) | 3 |
f′(x) | - | 0 | + | 0 | |
f(x) | 4 | ↘ | 極小值 | ↗ | 1 |
所以當時, ,
科目:高中數(shù)學 來源: 題型:
【題目】在正四面體中,分別是的中點,下面四個結(jié)論:
①//平面
②平面
③平面平面
④平面平面
其中正確結(jié)論的序號是______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)f(x)=2a2x-1-1的圖象過定點(,-1);
②已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x(x+1),若f(a)=-2則實數(shù)a=-1或2.
③若loga>1,則a的取值范圍是(,1);
④若對于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關(guān)于直線x=2對稱;
⑤對于函數(shù)f(x)=lnx,其定義域內(nèi)任意x1≠x2都滿足f()≥
其中所有正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當時,,若函數(shù)恰有一個零點,則實數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)在復數(shù)范圍內(nèi)解方程(為虛數(shù)單位)
(2)設是虛數(shù),是實數(shù),且
(i)求的值及的實部的取值范圍;
(ii)設,求證:為純虛數(shù);
(iii)在(ii)的條件下求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的兩條高線所在直線方程為2x-3y+1=0和x+y=0,頂點A(1,2).
求(1)BC邊所在的直線方程;
(2)△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的個數(shù)是( )
①若直線平面,直線,則;②若直線l和平面內(nèi)的無數(shù)條直線垂直,則直線l與平面必相交;③過平面外一點有且只有一條直線和平面垂直;④過直線外一點有且只有一個平面和直線a垂直
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項目在冬奧會金牌零的突破.某高校為調(diào)查該校學生在冬奧會期間累計觀看冬奧會的時間情況.收集了200位男生、100位女生累計觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機抽取20個人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.
(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;
(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;
(3)以(1)中的頻率估計100位女生中累計觀看時間小于20個小時的人數(shù).已知200位男生中累計觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認為“該校學生觀看冬奧會累計時間與性別有關(guān)”.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的定義域;
(2)若函數(shù)有且僅有一個零點,求實數(shù)m的取值范圍;
(3)任取,若不等式對任意恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com