已知
e1
、
e2
不共線,
a
=
e1
+
e2
,
b
=2
e1
+a
e2
,要使
a
,
b
能作為平面內(nèi)所有向量的一組基底,則實(shí)數(shù)a的取值范圍是______.
由做基底的條件可知,
a
b
不共線,
當(dāng)
a
b
共線時(shí),必存在實(shí)數(shù)λ使
b
a
,
即2
e1
+a
e2
=λ(
e1
+
e2
),
故可得
2=λ
a=λ
,解之可得a=2
故要使兩向量作基底,必有a≠2.
故答案為:(-∞,2)∪(2,+∞)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
e1
e2
不共線,
a
=
e1
+
e2
b
=2
e1
+a
e2
,要使
a
,
b
能作為平面內(nèi)所有向量的一組基底,則實(shí)數(shù)a的取值范圍是
(-∞,2)∪(2,+∞)
(-∞,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
e1
,
e2
不共線,則不可以作為一組基底的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
e1
,
e2
不共線,
a
=k
e1
+
e2
,
b
=
e1
+k
e2
,當(dāng)k=
±1
±1
時(shí),
a
b
共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61
,求
a
b
的值;
(2)設(shè)兩個(gè)非零向量
e1
e2
不共線.如果
AB
=
e1
+
e2
BC
=2
e1
+8
e2
,
CD
=3
e1
-3
e2

求證:A、B、D三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案