圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),AB為過(guò)點(diǎn)P且傾斜角為α的弦;
(1)當(dāng)時(shí),求AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),求直線AB的方程.
【答案】分析:(1)根據(jù)直線的傾斜角求出斜率.因?yàn)橹本AB過(guò)P(-1,2),可表示出直線AB的解析式,利用點(diǎn)到直線的距離公式求出圓心到弦的距離,根據(jù)勾股定理求出弦的一半,乘以2得到弦AB的長(zhǎng);
(2)因?yàn)橄褹B被點(diǎn)P平分,先求出OP的斜率,然后根據(jù)垂徑定理得到OP⊥AB,由垂直得到兩條直線斜率乘積為-1,求出直線AB的斜率,然后寫出直線的方程.
解答:解:(1)直線AB的斜率k=tan=-1,
∴直線AB的方程為y-2=-(x+1),即x+y-1=0
∵圓心O(0,0)到直線AB的距離d==
∴弦長(zhǎng)|AB|=2=2=
(2)∵P為AB的中點(diǎn),OA=OB=r,
∴OP⊥AB
==-2,∴kAB=
∴直線AB的方程為y-2=(x+1),即x-2y+5=0
點(diǎn)評(píng):考查學(xué)生會(huì)根據(jù)傾斜角求出直線的斜率,綜合運(yùn)用直線與圓方程的能力,會(huì)根據(jù)一個(gè)點(diǎn)和斜率寫出直線的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過(guò)點(diǎn)P0且傾斜角為α的弦;
(1)當(dāng)a=
4
時(shí),求AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P0平分時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2=8內(nèi)有一點(diǎn)P0 (-1,2),當(dāng)弦AB被P0平分時(shí),直線AB的方程為
x-2y+5=0
x-2y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為原點(diǎn),圓x2+y2=8內(nèi)有一點(diǎn)P(1,2),AB和CD為過(guò)點(diǎn)P的弦.
(1)當(dāng)弦AB被點(diǎn)P平分時(shí),求直線AB的方程;
(2)若
OA
OB
=1
,求直線AB的斜率;
(3)若AB⊥CD,求四邊形ABCD面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),弦AB過(guò)點(diǎn)P,且傾斜角為α
(1)若 sinα=
45
,求線段AB的長(zhǎng);
(2)若弦AB恰被P平分,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春模擬)圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),AB為過(guò)點(diǎn)P但不與x軸垂直的弦,O為坐標(biāo)原點(diǎn).則
OA
OB
的取值范圍
[-8,2]
[-8,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案