【題目】設函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當k=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當 時,求函數(shù)f(x)在[0,k]上的最大值M.

【答案】
(1)解:當k=1時,f(x)=(x﹣1)ex﹣x2,

f'(x)=ex+(x﹣1)ex﹣2x=x(ex﹣2)

令f'(x)=0,解得x1=0,x2=ln2>0

所以f'(x),f(x)隨x的變化情況如下表:

x

(﹣∞,0)

0

(0,ln2)

ln2

(ln2,+∞)

f'(x)

+

0

0

+

f(x)

極大值

極小值

所以函數(shù)f(x)的單調(diào)增區(qū)間為(﹣∞,0)和(ln2,+∞),單調(diào)減區(qū)間為(0,ln2)


(2)解:f(x)=(x﹣1)ex﹣kx2,x∈[0,k],

f'(x)=xex﹣2kx=x(ex﹣2k),f'(x)=0,解得x1=0,x2=ln(2k)

令φ(k)=k﹣ln(2k),

所以φ(k)在 上是減函數(shù),∴φ(1)≤φ(k)<φ ,∴1﹣ln2≤φ(k)< <k.

即0<ln(2k)<k

所以f'(x),f(x)隨x的變化情況如下表:

x

(0,ln(2k))

ln(2k)

(ln(2k),k)

f'(x)

0

+

f(x)

極小值

f(0)=﹣1,

f(k)﹣f(0)

=(k﹣1)ek﹣k3﹣f(0)

=(k﹣1)ek﹣k3+1

=(k﹣1)ek﹣(k3﹣1)

=(k﹣1)ek﹣(k﹣1)(k2+k+1)

=(k﹣1)[ek﹣(k2+k+1)]

,∴k﹣1≤0.

對任意的 ,y=ek的圖象恒在y=k2+k+1下方,所以ek﹣(k2+k+1)≤0

所以f(k)﹣f(0)≥0,即f(k)≥f(0)

所以函數(shù)f(x)在[0,k]上的最大值M=f(k)=(k﹣1)ek﹣k3


【解析】(1)利用導數(shù)的運算法則即可得出f′(x),令f′(x)=0,即可得出實數(shù)根,通過列表即可得出其單調(diào)區(qū)間;(2)利用導數(shù)的運算法則求出f′(x),令f′(x)=0得出極值點,列出表格得出單調(diào)區(qū)間,比較區(qū)間端點與極值即可得到最大值.
【考點精析】利用利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導數(shù)對題目進行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了實現(xiàn)綠色發(fā)展,避免能源浪費,某市計劃對居民用電實行階梯收費.階梯電價原則上以住宅(一套住宅為一戶)的月用電量為基準定價,具體劃分標準如表:

階梯級別

第一階梯電量

第二階梯電量

第三階梯電量

月用電量范圍(單位:

從本市隨機抽取了100戶,統(tǒng)計了今年6月份的用電量,這100戶中用電量為第一階梯的有20戶,第二階梯的有60戶,第三階梯的有20.

(1)現(xiàn)從這100戶中任意選取2戶,求至少1戶用電量為第二階梯的概率;

(2)以這100戶作為樣本估計全市居民的用電情況,從全市隨機抽取3戶,表示用電量為第二階梯的戶數(shù),求的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列中,.若記表示不超過的最大整數(shù),(如).令,則數(shù)列的前2000項和為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電影院共有個座位,某天,這家電影院上、下午各演一場電影.看電影的是甲、乙、丙三所中學的學生,三所學校的觀影人數(shù)分別是985人,1010人,2019人(同一所學校的學生既可看上午場,又可看下午場,但每人只能看一場).已知無論如何排座位,這天觀影時總存在這樣的一個座位,上、下午在這個座位上坐的是同一所學校的學生,那么的可能取值有__________個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)根據(jù)莖葉圖計算樣本均值;
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(Ⅲ)設函數(shù),其中.證明:的圖象在圖象的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是()

A. 銳角是第一象限的角,所以第一象限的角都是銳角;

B. 如果向量,則

C. 中,記,,則向量可以作為平面ABC內(nèi)的一組基底;

D. ,都是單位向量,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,是函數(shù)的兩個相鄰的零點.

(1)求;

(2)若對任意,都有,求實數(shù)的取值范圍.

(3)若關(guān)于的方程上有兩個不同的解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“冰桶挑戰(zhàn)賽”是一項社交網(wǎng)絡上發(fā)起的慈善公益活動,活動規(guī)定:被邀請者要么在24小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)和不接受挑戰(zhàn)是等可能的,且互不影響.

(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?

(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關(guān),某調(diào)查機構(gòu)進行了隨機抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:

性別 成績

接受挑戰(zhàn)

不接受挑戰(zhàn)

總計

男性

45

15

60

女性

25

15

40

總計

70

30

100

根據(jù)表中數(shù)據(jù),能有有90%的把握認為“冰桶挑戰(zhàn)賽與受邀者的性別有關(guān)”?

附:,其中.

2.706

3.841

6.635

10.828

0.10

0.05

0.010

0.001

查看答案和解析>>

同步練習冊答案