(本小題滿分10分)如圖,在三棱錐中,三條棱、、兩兩垂直,且 與平面角,與平面角.

(1)由該棱錐相鄰的兩個面組成的二面角中,指出所有的直二面角;
(2)求與平面所成角的大;
(3)求二面角大小的余弦值.
.(1)三個直二面角
(2)由已知得,設
過C作于H,,
就是AC與平面ABD所成的角,可得

(3),過B作于F,則,過B在內(nèi)作于E,連EF,則,則就是二面角的平面角,可求得
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PD=CD,EPC的中點。

(1)證明PA平面BDE;
(2)求二面角B-DE-C的平面角的余弦值;
(3)在棱PB上是否存在點F,使PB⊥平面DEF?
證明你的結論。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用一個平面去截一個正四棱柱,截法不同,所得截面形狀不一定相同,在各種截法中,邊數(shù)最多的截面的形狀為                                  (   )
A.四邊形B.五邊形C.六邊形D.八邊形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.

(Ⅰ)求證AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三棱錐中,底面為邊長等于2的等邊三角形,垂直于底面,=1,那么直線與平面所成角的正弦值為 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖, PA⊥平面ABCD,四邊形ABCD是矩形,點E在邊AB上,F(xiàn)為PD的中點,AF∥平面PCE,二面角P-CD-B為450,AD=2,CD=3.

(1)試確定E點位置; (2)求直線AF到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖S為正三角形所在平面ABC外一點,且SASBSCAB,E、F分別為SC、AB中點,則異面直線EFSA所成角為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

a、b是兩條異面直線,A是不在a、b上的點,則下列結論成立的是(  )
A.過A有且只有一個平面平行于a、b
B.過A至少有一個平面平行于a、b
C.過A有無數(shù)個平面平行于a、b
D.過A且平行a、b的平面可能不存在

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在平行六面體中,,,,,的中點,設

(1)用表示;
(2)求的長.

查看答案和解析>>

同步練習冊答案