A. | [3,+∞) | B. | [2+ln2,+∞) | C. | [2e,+∞) | D. | [2+$\frac{2}{e}$,+∞) |
分析 存在x∈[0,2],使得f(x)≥e,?a≥(2e1-x+x)min,x∈[0,2].令g(x)=2e1-x+x,x∈[0,2].利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.
解答 解:存在x∈[0,2],使得f(x)≥e,?a≥(2e1-x+x)min,x∈[0,2].
令g(x)=2e1-x+x,x∈[0,2].
g′(x)=-2e1-x+1,令g′(x)=-2e1-x+1=0,解得x=ln2+1.
可知:當(dāng)x=ln2+1時,函數(shù)g(x)取得極小值,即最小值.
∴a≥2e-ln2+ln2+1=2+ln2.
∴實(shí)數(shù)a的取值范圍是[2+ln2,+∞).
故選:B.
點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、不等式與方程的解法,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x(x-1) | B. | x(x+1) | C. | -x(x-1) | D. | -x(x+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com