焦點(diǎn)坐標(biāo)是(-2,0)、(2,0),且短軸長為2
6
的橢圓方程是(  )
A.
x2
9
+
y2
6
=1
B.
y2
9
+
x2
6
=1
C.
x2
10
+
y2
6
=1
D.
y2
10
+
x2
6
=1
∵橢圓的焦點(diǎn)坐標(biāo)是(-2,0)、(2,0),且短軸長為2
6

∴c=2,b=
6

∴a2=b2+c2=6+4=10,
∴橢圓方程是:
x2
10
+
y2
6
=1,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率,過橢圓的右焦點(diǎn)且垂直于長軸的弦長為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線L與橢圓相交于P、Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ。試探究點(diǎn)O到直線L的距離是否為定值?若是,求出這個(gè)定值;若不是,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)定點(diǎn)M1(0,-3),M2(0,3),動(dòng)點(diǎn)P滿足條件|PM1|+|PM2|=a+
9
a
(其中a是正常數(shù)),則點(diǎn)P的軌跡是( 。
A.橢圓B.線段C.橢圓或線段D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),
(1)設(shè)橢圓C上的點(diǎn)(
3
,
3
2
)到F1,F(xiàn)2兩點(diǎn)距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo)
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程
(3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPM,KPN試探究kPM•KPN的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求適合下列條件的曲線的標(biāo)準(zhǔn)方程:
(1)a=3b,經(jīng)過點(diǎn)M(3,0)的橢圓;
(2)a=2
5
,經(jīng)過點(diǎn)N(2,-5),焦點(diǎn)在y軸上的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓經(jīng)過點(diǎn)(0,3),且長軸是短軸的3倍,則橢圓的標(biāo)準(zhǔn)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)求經(jīng)過點(diǎn)(-
3
2
5
2
),且與橢圓9x2+5y2=45有共同焦點(diǎn)的橢圓方程;
(Ⅱ)已知橢圓以坐標(biāo)軸為對稱軸,且長軸長是短軸長的3倍,點(diǎn)P(3,0)在該橢圓上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓中心在原點(diǎn),坐標(biāo)軸為對稱軸,離心率是
2
2
,過點(diǎn)(4,0),則橢圓的方程是( 。
A.
x2
16
+
y2
8
=1
B.
x2
16
+
y2
8
=1
x2
8
+
y2
16
=1
C.
x2
16
+
y2
32
=1
D.
x2
16
+
y2
8
=1
x2
16
+
y2
32
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)(-3,2)且與
x2
9
+
y2
4
=1
有相同焦點(diǎn)的橢圓方程為______.

查看答案和解析>>

同步練習(xí)冊答案