【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面,為的中點(diǎn),,,,.
(1)求證:平面;
(2)求二面角的余弦值;
【答案】(1)證明見解析;(2)
【解析】
(1)取中點(diǎn),由中位線性質(zhì)可知且,由此可得,證得,根據(jù)線面平行的判定定理即可證得結(jié)論;
(2)取中點(diǎn),由面面垂直性質(zhì)可知平面,結(jié)合平行關(guān)系知,由此可建立以為原點(diǎn)的空間直角坐標(biāo)系,利用二面角的向量求法求得結(jié)果.
(1)取中點(diǎn),連結(jié),
分別為中點(diǎn), 且
又,
四邊形為平行四邊形
平面,平面 平面
(2)取中點(diǎn),連接,
等邊三角形
平面平面,平面平面,平面
, 四邊形為平行四邊形
則以為坐標(biāo)原點(diǎn),可建立如圖所示空間直角坐標(biāo)系
則,,,,
,
設(shè)平面的一個(gè)法向量為
則,令,則,
顯然,平面的一個(gè)法向量為
二面角為銳二面角 二面角的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅(jiān)決貫徹落實(shí)中央扶貧工作重大決策部署,在各個(gè)貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國家精準(zhǔn)扶貧的號(hào)召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時(shí)間的關(guān)系如下表所示:
土地使用面積(單位:畝) | 1 | 2 | 3 | 4 | 5 |
管理時(shí)間(單位:月) | 8 | 10 | 13 | 25 | 24 |
并調(diào)查了某村300名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關(guān)系數(shù)的大小,并判斷管理時(shí)間與土地使用面積是否線性相關(guān)?
(2)是否有99.9%的把握認(rèn)為村民的性別與參與管理的意愿具有相關(guān)性?
(3)若以該村的村民的性別與參與管理意愿的情況估計(jì)貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望。
參考公式:
其中。臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:直線關(guān)于圓的圓心距單位圓心到直線的距離與圓的半徑之比.
(1)設(shè)圓,求過點(diǎn)的直線關(guān)于圓的圓心距單位的直線方程.
(2)若圓與軸相切于點(diǎn),且直線關(guān)于圓的圓心距單位,求此圓的方程.
(3)是否存在點(diǎn),使過點(diǎn)的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓與的圓心距單位始終相等?若存在,求出相應(yīng)的點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),分別是橢圓的左頂點(diǎn)和上頂點(diǎn),為其右焦點(diǎn),,且該橢圓的離心率為;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓上的一動(dòng)點(diǎn),且不與橢圓頂點(diǎn)重合,點(diǎn)為直線與軸的交點(diǎn),線段的中垂線與軸交于點(diǎn),若直線斜率為,直線的斜率為,且(為坐標(biāo)原點(diǎn)),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第二屆中國國際進(jìn)口博覽會(huì)于2019年11月5日至10日在上海國家會(huì)展中心舉行.它是中國政府堅(jiān)定支持貿(mào)易自由化和經(jīng)濟(jì)全球化,主動(dòng)向世界開放市場的重要舉措,有利于促進(jìn)世界各國加強(qiáng)經(jīng)貿(mào)交流合作,促進(jìn)全球貿(mào)易和世界經(jīng)濟(jì)增長,推動(dòng)開放世界經(jīng)濟(jì)發(fā)展.某機(jī)構(gòu)為了解人們對(duì)“進(jìn)博會(huì)”的關(guān)注度是否與性別有關(guān),隨機(jī)抽取了100名不同性別的人員(男、女各50名)進(jìn)行問卷調(diào)查,并得到如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
關(guān)注度極高 | 35 | 14 | 49 |
關(guān)注度一般 | 15 | 36 | 51 |
合計(jì) | 50 | 50 | 100 |
(1)根據(jù)列聯(lián)表,能否有99.9%的把握認(rèn)為對(duì)“進(jìn)博會(huì)”的關(guān)注度與性別有關(guān);
(2)若從關(guān)注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談?wù)勱P(guān)注“進(jìn)博會(huì)”的原因,求這2人中至少有一名女性的概率.
附:.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一青蛙從點(diǎn)開始依次水平向右和豎直向上跳動(dòng),其落點(diǎn)坐標(biāo)依次是,(如圖,的坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點(diǎn)到點(diǎn)所經(jīng)過的路程.
(1)點(diǎn)為拋物線準(zhǔn)線上一點(diǎn),點(diǎn),均在該拋物線上,并且直線經(jīng)過該拋物線的焦點(diǎn),證明;
(2)若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出(不需證明);
(3)若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列說法正確的是__________.的值域是;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根;若函數(shù)有三個(gè)零點(diǎn)時(shí),則;經(jīng)過有三條直線與相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:(),過原點(diǎn)的兩條直線和分別與交于點(diǎn)、和、,得到平行四邊形.
(1)若,,且為正方形,求該正方形的面積.
(2)若直線的方程為,和關(guān)于軸對(duì)稱,上任意一點(diǎn)到和的距離分別為和,證明:.
(3)當(dāng)為菱形,且圓內(nèi)切于菱形時(shí),求,滿足的關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com