已知曲線C1的極坐標方程為P=6cosθ,曲線C2的極坐標方程為θ=(p∈R),曲線C1,C2相交于A,B兩點.
(Ⅰ)把曲線C1,C2的極坐標方程轉(zhuǎn)化為直角坐標方程;
(Ⅱ)求弦AB的長度.
【答案】分析:(Ⅰ)利用直角坐標與極坐標間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得曲線C2及曲線C1的直角坐標方程.
(Ⅱ)利用直角坐標方程的形式,先求出圓心(3,0)到直線的距離,最后結(jié)合點到直線的距離公式弦AB的長度.
解答:解:(Ⅰ)曲線C2(p∈R)
表示直線y=x,
曲線C1:P=6cosθ,即p2=6pcosθ
所以x2+y2=6x即(x-3)2+y2=9
(Ⅱ)∵圓心(3,0)到直線的距離,
r=3所以弦長AB==
∴弦AB的長度
點評:本小題主要考查圓和直線的極坐標方程與直角坐標方程的互化,以及利用圓的幾何性質(zhì)計算圓心到直線的距等基本方法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知曲線C1的極坐標方程為P=6cosθ,曲線C2的極坐標方程為θ=
π4
(p∈R),曲線C1,C2相交于A,B兩點.
(Ⅰ)把曲線C1,C2的極坐標方程轉(zhuǎn)化為直角坐標方程;
(Ⅱ)求弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•香洲區(qū)模擬)已知曲線C1的極坐標方程為ρ=6cosθ,曲線C2的極坐標方程為θ=
π
4
(ρ∈R)
,曲線C1、C2相交于點A、B.則弦AB的長等于
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極坐標系的極點是直角坐標系的原點,極軸為x軸正半軸.已知曲線C1的極坐標方程為ρ=2cosθ,曲線C2的參數(shù)方程為
x=2+tcosα
y=
3
+tsinα
(其中t為參數(shù),α為字母常數(shù)且α∈[0,π))

(1)求曲線C1的直角坐標方程和曲線C2的普通方程;
(2)當曲線C1和曲線C2沒有公共點時,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)圓O是△ABC的外接圓,過點C的圓的切線與AB的延長線交于點D,CD=2
7
,AB=BC=3,求BD以及AC的長.
(2)已知曲線C1的極坐標方程為ρ=6cosθ,曲線C2的極坐標方程為θ=
π
4
,曲線C1,C2相交于A,B兩點
(I)把曲線C1,C2的極坐標方程轉(zhuǎn)化為直角坐標方程;
(II)求弦AB的長度.
(3)已知a,b,c都是正數(shù),且a,b,c成等比數(shù)列,求證:a2+b2+c2>(a-b+c)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)極點與原點重合,極軸與x軸正半軸重合.已知曲線C1的極坐標方程是:ρcos(θ+
π
3
)=m
,曲線C2參數(shù)方程為:
x=2+2cosθ
y=2sinθ
(θ為參數(shù)),若兩曲線有公共點,則實數(shù)m的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習冊答案