已知函數(shù).
⑴求函數(shù)的單調(diào)區(qū)間;
⑵如果對于任意的,總成立,求實數(shù)的取值范圍.

⑴單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間⑵實數(shù)的取值范圍是

解析試題分析:⑴求出函數(shù)的導(dǎo)數(shù)令其大于零得增區(qū)間,令其小于零得減函數(shù);⑵令,要使總成立,只需,對討論,利用導(dǎo)數(shù)求的最小值.
試題解析:(1) 由于,所以
.       (2分)
當(dāng),即時,
當(dāng),即時,.
所以的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.                         (6分)
(2) 令,要使總成立,只需.
求導(dǎo)得
,則,()
所以上為增函數(shù),所以.                       (8分)
分類討論:
① 當(dāng)時,恒成立,所以上為增函數(shù),所以,即恒成立;
② 當(dāng)時,在上有實根,因為上為增函數(shù),所以當(dāng)時,,所以,不符合題意;
③ 當(dāng)時,恒成立,所以上為減函數(shù),則,不符合題意.
綜合①②③可得,所求的實數(shù)的取值范圍是.                    (12分)
考點:利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間、利用導(dǎo)數(shù)求函數(shù)最值、構(gòu)造函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)研究函數(shù)的極值點;
(2)當(dāng)時,若對任意的,恒有,求的取值范圍;
(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)求函數(shù)上的最小值;
(2)對一切,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)的圖象在公共點P處有相同的切線,求實數(shù)的值及點P的坐標;
(2)若函數(shù)的圖象有兩個不同的交點M、N,求實數(shù)的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)判斷函數(shù)上的單調(diào)性,并用定義加以證明;
(Ⅱ)若對任意,總存在,使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處的切線與軸平行.
(1)求的值和函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象與拋物線恰有三個不同交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底,
(1)求的最值;
(2)若關(guān)于方程有兩個不同解,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若曲線處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。(為常數(shù),
(Ⅰ)若是函數(shù)的一個極值點,求的值;
(Ⅱ)求證:當(dāng)時,上是增函數(shù);
(Ⅲ)若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案