【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面;

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

【答案】(1)證明見解析.

(2) .

【解析】試題分析:(1) 中由余弦定理可知,作于點,由面面垂直性質定理得平面.所以. 又∵從而得證;

(2)以為原點,以方向為軸正方向建立如圖所示空間直角坐標系,由二面角的大小為60°布列關于的方程解之即可.

試題解析:

(1)中,由余弦定理,可得.

,∴.

于點,

∵平面平面,

平面平面

平面.

平面,

.

又∵ ,

平面.

又∵平面,

.

,

平面.

(2)由(1)知兩兩垂直,以為原點,以方向為軸正方向建立如圖所示空間直角坐標系

, .

,

則由

.

設平面的一個法向量為

則由

,

.

平面的一個法向量可取

.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),曲線C2的參數(shù)方程為(為參數(shù)).在以O為極點,x軸的正半軸為極軸的極坐標系中,射線lθα C1,C2 各有一個交點.當 α0時,這兩個交點間的距離為2,當 α時,這兩個交點重合.

(1) 求曲線C1C2的直角坐標方程

(2) 設當 α時,lC1,C2的交點分別為A1,B1,當 α=-時,lC1C2的交點分別為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和為,且.

1)求出數(shù)列的通項公式;

2)記,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中國決勝全面建成小康社會的關鍵之年,如何更好地保障和改善民生,如何切實增強政策“獲得感”,成為年全國兩會的重要關切.某地區(qū)為改善民生調(diào)研了甲、乙、丙、丁、戊個民生項目,得到如下信息:①若該地區(qū)引進甲項目,就必須引進與之配套的乙項目;②丁、戊兩個項目與民生密切相關,這兩個項目至少要引進一個;③乙、丙兩個項目之間有沖突,兩個項目只能引進一個;④丙、丁兩個項目關聯(lián)度較高,要么同時引進,要么都不引進;⑤若引進項目戊,甲、丁兩個項目也必須引進.則該地區(qū)應引進的項目為( )

A. 甲、乙B. 丙、丁C. 乙、丁D. 甲、丙

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角AB,C對應的邊分別是ab,c,已知cos2A﹣3cosB+C=1

1)求角A的大。

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在固定壓力差(壓力差為常數(shù))下,當氣體通過圓形管道時,其流量速率,(單位:)與管道半徑r(單位:cm)的四次方成正比.

1)寫出氣體流量速率,關于管道半徑r的函數(shù)解析式;

2)若氣體在半徑為3cm的管道中,流量速率為,求該氣體通過半徑為r的管道時,其流量速率v的表達式;

3)已知(2)中的氣體通過的管道半徑為5cm,計算該氣體的流量速率(精確到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖(1)是某條公共汽車線路收支差額y關于乘客量x的圖象.

1)試說明圖(1)上點A,點B以及射線AB上的點的實際意義;

2)由于目前本條線路虧損,公司有關人員提出了兩種扭虧為贏的建議,如圖(2)(3)所示,你能根據(jù)圖象,說明這兩種建議是什么嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:關于的不等式無解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當自變量x在什么范圍取值時,下列函數(shù)的值等于0?大于0?小于0?

(1);

(2);

(3);

(4).

查看答案和解析>>

同步練習冊答案