下列說法:
①設(shè)有一批產(chǎn)品,其次品率為0.05,則從中任取200件,必有10件次品;
②做100次拋硬幣的試驗,有51次出現(xiàn)正面.因此出現(xiàn)正面的概率是0.51;
③隨機事件A的概率是頻率值,頻率是概率的近似值;
④隨機事件A的概率趨近于0,即P(A)→0,則A是不可能事件;
⑤拋擲骰子100次,得點數(shù)是1的結(jié)果是18次,則出現(xiàn)1點的頻率是
⑥隨機事件的頻率就是這個事件發(fā)生的概率;
其中正確的有____________________________________
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
國慶前夕,我國具有自主知識產(chǎn)權(quán)的“人甲型H1N1流感病毒核酸檢測試劑盒”(簡稱試劑盒)在上海進行批量生產(chǎn),這種“試劑盒”不僅成本低操作簡單,而且可以準(zhǔn)確診斷出“甲流感”病情,為甲型H1N1流感疫情的防控再添一道安全屏障.某醫(yī)院在得到“試劑盒”的第一時間,特別選擇了知道診斷結(jié)論的5位發(fā)熱病人(其中“甲流感”患者只占少數(shù)),對病情做了一次驗證性檢測.已知如果任意抽檢2人,恰有1位是“甲流感”患者的概率為。
(1)求出這5位發(fā)熱病人中“甲流感”患者的人數(shù);
(2)若用“試劑盒”逐個檢測這5位發(fā)熱病人,直到能確定“甲流感”患者為止,設(shè)ξ表示檢測次數(shù),求ξ的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響. 已知學(xué)生小張只選甲的概率為,只選修甲和乙的概率是,至少選修一門的概率是,用表示小張選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.
(Ⅰ)求學(xué)生小張選修甲的概率;
(Ⅱ)記“函數(shù) 為上的偶函數(shù)”為事件,求事件的概率;
(Ⅲ)求的分布列和數(shù)學(xué)期望。                                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某地區(qū)舉辦科技創(chuàng)新大賽,有50件科技作品參賽,大賽組委會對這50件作品分別
從“創(chuàng)新性”和“實用性”兩項進行評分,每項評分均按等級采用5分制,若設(shè)“創(chuàng)新性”得分為,“實用性”得分為,統(tǒng)計結(jié)果如下表:
            
作品數(shù)量

實用性
1分
2分
3分
4分
5分
 
創(chuàng)


1分
1
3
1
0
1
2分
1
0
7
5
1
3分
2
1
0
9
3
4分
1

6
0

5分
0
0
1
1
3
(1)求“創(chuàng)新性為4分且實用性為3分”的概率;
(2)若“實用性”得分的數(shù)學(xué)期望為,求、的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某大學(xué)畢業(yè)生響應(yīng)國家號召,到某村參加村委會主任應(yīng)聘考核?己艘来畏譃楣P試、面
試.試用共三輪進行,規(guī)定只有通過前一輪考核才能進入下一輪考核,否則將被淘汰,
三輪考核都通過才能被正式錄用。設(shè)該大學(xué)畢業(yè)生通過三輪考核的概率分別為, 且各輪考核通過與否相互獨立。
(Ⅰ)求該大學(xué)畢業(yè)生未進入第三輪考核的概率;
(Ⅱ)設(shè)該大學(xué)畢業(yè)生在應(yīng)聘考核中考核次數(shù)為ξ,求ξ的數(shù)學(xué)期望和方差。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

位于直角坐標(biāo)原點的一個質(zhì)點按下列規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質(zhì)點移動五次后位于點(1,0)的概率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)
一次數(shù)學(xué)考試共有10道選擇題,每道選擇題都有4個選項,其中有且只有一個選項是正確的.設(shè)計試卷時,安排前n道題使考生都能得出正確答案,安排8-n道題,每題得出正確答案的概率為,安排最后兩道題,每題得出正確答案的概率為,且每題答對與否相互獨立,同時規(guī)定:每題選對得5分,不選或選錯得0分.
(1)當(dāng)n=6時,
①分別求考生10道題全答對的概率和答對8道題的概率;
②問:考生答對幾道題的概率最大,并求出最大值;
(2)要使考生所得分數(shù)的期望不小于40分,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋中裝有個形狀大小完全相同的小球,球的編號分別為.
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(Ⅱ)若從袋中每次隨機抽取個球,有放回的抽取3次,求恰有次抽到號球的概率;
(Ⅲ)若一次從袋中隨機抽取個球,記球的最大編號為,求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
為了收集2009年7月“長江日全食”天象的有關(guān)數(shù)據(jù),國家天文臺在成都、武漢各設(shè)置了A、B兩個最佳觀測站,共派出11名研究員分別前往兩地實地觀測。原計劃向成都派出3名研究員去A觀測站,2名研究員去B觀測站;向武漢派出3名研究員去A觀測站,3名研究員去B觀測站,并都已指定到人。由于某種原因,出發(fā)前夕要從原計劃派往成都的5名研究員中隨機抽調(diào)1人改去武漢,同時,從原計劃派往武漢的6名研究員中隨機抽調(diào)1人改去成都,且被抽調(diào)的研究員仍按原計劃去A觀測站或B觀測站工作。求:
(I)派往兩地的A、B兩個觀測站的研究員人數(shù)不變的概率;
(II)在成都A觀測站的研究員從數(shù)X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊答案