三棱錐S—ABC中,SA⊥底面ABC,SA=4,AB=3,D為AB的中點(diǎn),∠ABC=90°,則點(diǎn)D到面SBC的距離等于                                         (   )
A.B.C.D.
C

專(zhuān)題:計(jì)算題.
分析:先由面面垂直的性質(zhì)找出點(diǎn)D到面SBC的距離DE,再利用三角形相似,對(duì)應(yīng)邊成比例求出DE的值.
解答:解:∵SA⊥底面ABC,SA=4,AB=3,D為AB的中點(diǎn),∠ABC=90°,
∴BC⊥面SAB∴面 SBC⊥面SAB,在面SAB中,作DE⊥SB,
則 DE⊥面SBC,DE為所求.
由△BDE∽△BSA 得:DE :SA ="BD" :BS 即DE :4 = : 5 ,
∴DE=,應(yīng)選C。
點(diǎn)評(píng):本題考查線(xiàn)面垂直、面面垂直性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在棱長(zhǎng)為1的正方體-中,點(diǎn)到平面的距離   。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

三棱錐中,,, D為AB的中點(diǎn),∠ABC=90°,則點(diǎn)D到面SBC的距離等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在棱長(zhǎng)為的正方體中,平面與平面間的距離是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

半徑為a的球放置在墻角,同時(shí)與兩墻面相切,則球心到墻角頂點(diǎn)的距離是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

我們知道,在邊長(zhǎng)為a的正三角形內(nèi)任一點(diǎn)到三邊的距離之和為定值,類(lèi)比上述結(jié)論,在邊長(zhǎng)a的正四面體內(nèi)任一點(diǎn)到其四個(gè)面的距離之和為定值          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在空間直角坐標(biāo)系中,已知,則坐標(biāo)原點(diǎn)到平面
的距離是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體ABCD—的棱上到異面直線(xiàn)AB,C的距離相等的點(diǎn)的個(gè)數(shù)為(  )
A.2B.3C.4D.5
      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知三點(diǎn),則的面積是____________

查看答案和解析>>

同步練習(xí)冊(cè)答案