曲線y=sinx+e
x在點(0,1)處的切線方程是( 。
A.x-3y+3=0 | B.x-2y+2=0 | C.2x-y+1=0 | D.3x-y+1=0 |
∵y=sinx+ex,
∴y′=ex+cosx,
∴在x=0處的切線斜率k=f′(0)=1+1=2,
∴y=sinx+ex在(0,1)處的切線方程為:y-1=2x,
∴2x-y+1=0,
故選C.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
在
上有最大值
,試確定常數(shù)
,并求這個函數(shù)在該閉區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
,當
時,有
恒成立,則實數(shù)
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
f(x)=x3-x2+ax+b的圖象在點x=0處的切線方程為y=3x-2.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)設(shè)f′(x)≥6,求此不等式的解集.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)f(x)=x
3在點x=1處的切線方程是( 。
A.y=3x-2 | B.y=3x-4 | C.y=2x-1 | D.y=2x-2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)f(x)=ax2-lnx,x∈(0,e],其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)函數(shù)f(x)=ax+
(a,b∈Z),曲線y=f(x)在點(2,f(2)處的切線方程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x三角形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
f(x)=-ax+ln(a∈R)(1)當a=0時,求f(x)在
x=處切線的斜率;
(2)當
0≤a≤時,討論f(x)的單調(diào)性;
(3)設(shè)g(x)=x
2-2bx+3當
a=時,若對于任意x
1∈(0,2),存在x
2∈[1,2]使f(x
1)≥g(x
2)成立,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)f(x)=x
3的切線的斜率等于1,則這樣的切線有( )
查看答案和解析>>