如圖所示,在正方體ABCD-A1B1C1D1中,E、F分別是棱B1C1、B1B的中點(diǎn),求證:CF⊥平面EAB.
考點(diǎn):直線與平面垂直的判定
專題:證明題,空間位置關(guān)系與距離
分析:欲證CF⊥平面EAB,可證CF⊥BE,CF⊥AB,其中CF⊥BE可由△BB1E≌△BCF得到∠B1BE=∠BCF,從而∠BCF+∠EBC=90°,根據(jù)線面垂直的判定定理進(jìn)行判定即可.
解答: 證明:在正方形B1BCC1中,∵E、F分別為B1C1、B1B的中點(diǎn),
∴△BB1E≌△BCF,
∴∠B1BE=∠BCF,
∴∠BCF+∠EBC=90°,
∴CF⊥BE
又AB⊥平面B1BCC1,CF?平面B1BCC1,
∴AB⊥CF,
又∵AB∩BE=B,
∴CF⊥平面EAB.
點(diǎn)評(píng):本題主要考查了直線與平面垂直的判定,以及平面與平面平行的判定,這種題型是高考的趨勢(shì),屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=loga(x+3)-1(a>0,a≠1)和f(x)=3x+b的圖象過(guò)同一定點(diǎn),則f(log32)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,∠A=2∠B,∠C為鈍角,且∠A、B、C所對(duì)的邊為a,b,c的長(zhǎng)度均為整數(shù),則△ABC的周長(zhǎng)最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在圓x2+y2-2x=0上求一點(diǎn)P,使P到直線x+y+1=0的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A(-1,0),B(1,0),C(3,2),其外接圓為圓H.對(duì)于線段BH上的任意一點(diǎn)P,若在以C為圓心的圓上都存在不同的兩點(diǎn)M,N,使得點(diǎn)M是線段PN的中點(diǎn),則圓C的半徑r的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形OABC的邊長(zhǎng)為2.
(1)在其四邊或內(nèi)部取點(diǎn)P(x,y),且x,y∈Z,求事件:“|OP|>1”的概率;
(2)在其內(nèi)部取點(diǎn)P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面積均大于
2
3
”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,頂點(diǎn)A(1,7),B(3,3),C(7,3),過(guò)B作BD⊥AC于D點(diǎn),求D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象(如圖所示)過(guò)點(diǎn)(0,2)、(1.5,2)和點(diǎn)(2,0),且函數(shù)圖象關(guān)于點(diǎn)(2,0)對(duì)稱;直線x=1和x=3及y=0是它的漸近線.現(xiàn)要求根據(jù)給出的函數(shù)圖象研究函數(shù)g(x)=
1
f(x)
的相關(guān)性質(zhì)與圖象.
(1)寫(xiě)出函數(shù)y=g(x)的定義域、值域及單調(diào)遞增區(qū)間;
(2)作函數(shù)y=g(x)的大致圖象(要充分反映由圖象及條件給出的信息);
(3)試寫(xiě)出y=f(x)的一個(gè)解析式,并簡(jiǎn)述選擇這個(gè)式子的理由(按給出理由的完整性及表達(dá)式的合理、簡(jiǎn)潔程度分層給分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
4
sin(
π
4
-x)+
6
4
cos(
π
4
-x).
(1)求f(x)的最小正周期;
(2)若cosθ=
4
5
,θ∈(
2
,2π)
,求f(2θ+
π
3
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案