【題目】已知數(shù)列{an}的通項為an=log(n+1)(n+2)(n∈N*),我們把使乘積a1a2a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(0,2015]內(nèi)的所有“優(yōu)數(shù)”的和為( )
A.1024
B.2012
C.2026
D.2036
【答案】C
【解析】∵an=logn+1(n+2)
∴a1a2…an=log23log34…logn+1(n+2)
=
==log2(n+2),
若使log2(n+2)為整數(shù),則n+2=2k
在(1,2015]內(nèi)的所有整數(shù)分別為:22﹣2,23﹣2,…,210﹣2
∴所求的數(shù)的和為22﹣2+23﹣2+…+210﹣2=﹣2×9=2026
故選:C.
【考點精析】關(guān)于本題考查的數(shù)列的通項公式,需要了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】某大學高等數(shù)學老師這學期分別用兩種不同的教學方式試驗甲、乙兩個大一新班(人數(shù)均為60人,入學數(shù)學平均分數(shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣)。現(xiàn)隨機抽取甲、乙兩班各20名的高等數(shù)學期末考試成績,得到莖葉圖:
(Ⅰ)依莖葉圖判斷哪個班的平均分高?
(Ⅱ)現(xiàn)從甲班高等數(shù)學成績不得低于80分的同學中隨機抽取兩名同學,求成績?yōu)?/span>86分的同學至少有一個被抽中的概率;
(Ⅲ)學校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成績優(yōu)秀與教學方式有關(guān)?”
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
下面臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ , g(x)=x+lnx,其中a>0,且x∈(0,+∞).
(1)若a=1,求f(x)的最小值;
(2)若對任意x≥1,不等式f(x)≤g(x)恒成立,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對于預(yù)報變量的貢獻率, 越接近于1,表示回歸效果越好;②兩個變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1;③在回歸直線方程中,當解釋變量每增加一個單位時,預(yù)報變量平均減少0.5個單位;④對分類變量與,它們的隨機變量的觀測值來說, 越小,“與有關(guān)系”的把握程度越大.其中正確命題的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年10月19日,由中國工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實)產(chǎn)業(yè)大會在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項目.現(xiàn)某廠商抓住商機在去年用450萬元購進一批VR設(shè)備,經(jīng)調(diào)試后今年投入使用,計劃第一年維修、保養(yǎng)費用22萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該設(shè)備使用后,每年的總收入為180萬元,設(shè)使用x年后設(shè)備的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)使用若干年后,當年平均盈利額達到最大值時,求該廠商的盈利額.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當時,求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對于任意,都有成立,求實數(shù)的取值范圍;
(3)若,且,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫所有正確結(jié)論的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓心在y軸上,半徑為1,且過點(1,2)的圓的方程為( 。
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com