解:由指數(shù)爆炸、對數(shù)增長、冪函數(shù)增長的差異可得:
曲線C
1對應(yīng)的函數(shù)是f(x)=1.1
x,曲線C
2對應(yīng)的函數(shù)是h(x)=
,曲線C
3對應(yīng)的函數(shù)是g(x)=lnx+1.
由題圖知,當(dāng)x<1時,f(x)>h(x)>g(x);
當(dāng)1<x<e時,f(x)>g(x)>h(x);
當(dāng)e<x<a時,g(x)>f(x)>h(x);
當(dāng)a<x<b時,g(x)>h(x)>f(x);
當(dāng)b<x<c時,h(x)>g(x)>f(x);
當(dāng)c<x<d時,h(x)>f(x)>g(x);
當(dāng)x>d時,f(x)>h(x)>g(x).
分析:由指數(shù)爆炸、對數(shù)增長、冪函數(shù)增長的差異可得:
曲線C
1對應(yīng)的函數(shù)是f(x)=1.1
x,曲線C
2對應(yīng)的函數(shù)是h(x)=
,曲線C
3對應(yīng)的函數(shù)是g(x)=lnx+1.由題圖知,再分類討論:當(dāng)x<1時,當(dāng)1<x<e時,
當(dāng)e<x<a時,當(dāng)a<x<b時,當(dāng)b<x<c時,當(dāng)c<x<d時,當(dāng)x>d時,得出f(x),h(x),g(x)的大小關(guān)系即可.
點評:熟練掌握指數(shù)爆炸與對數(shù)增長及冪函數(shù)增長的差異、分類討論的思想方法、數(shù)形結(jié)合的思想方法是解題的關(guān)鍵.