【題目】2017高考特別強(qiáng)調(diào)了要增加對(duì)數(shù)學(xué)文化的考查,為此某校高三年級(jí)特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對(duì)整個(gè)高三年級(jí)的學(xué)生進(jìn)行了測(cè)試.現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績(jī),按照成績(jī)?yōu)?/span>, ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績(jī)均不低于50分).

(1)求頻率分布直方圖中的的值,并估計(jì)所抽取的50名學(xué)生成績(jī)的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

(2)若高三年級(jí)共有2000名學(xué)生,試估計(jì)高三學(xué)生中這次測(cè)試成績(jī)不低于70分的人數(shù);

(3)若在樣本中,利用分層抽樣的方法從成績(jī)不低于70分的三組學(xué)生中抽取6人,再?gòu)倪@6人中隨機(jī)抽取3人參加這次考試的考后分析會(huì),試求兩組中至少有1人被抽到的概率.

【答案】(1)見解析;(2).(3).

【解析】試題分析:(1)由各個(gè)矩形的面積和為可得,各矩形中點(diǎn)橫坐標(biāo)對(duì)應(yīng)頻率之積求和即可得平均數(shù),設(shè)中位數(shù)為分,利用左右兩邊面積為可得中位數(shù);(2)根據(jù)直方圖可得50名學(xué)生中成績(jī)不低于70分的頻率,即可估計(jì)這次測(cè)試成績(jī)不低于70分的人數(shù);(3)利用列舉法,確定基本事件的個(gè)數(shù),即利用古典概型概率公式可求出兩組中至少有1人被抽到的概率的概率.

試題解析:(1)由頻率分布直方圖可得第4組的頻率為 ,

.

故可估計(jì)所抽取的50名學(xué)生成績(jī)的平均數(shù)為

(分).

由于前兩組的頻率之和為,前三組的頻率之和為,故中位數(shù)在第3組中.

設(shè)中位數(shù)為分,

則有,所以,

即所求的中位數(shù)為分.

(2)由(1)可知,50名學(xué)生中成績(jī)不低于70分的頻率為,

由以上樣本的頻率,可以估計(jì)高三年級(jí)2000名學(xué)生中成績(jī)不低于70分的人數(shù)為.

(3)由(1)可知,后三組中的人數(shù)分別為15,10,5,故這三組中所抽取的人數(shù)分別為3,2,1.記成績(jī)?cè)?/span>這組的3名學(xué)生分別為, ,成績(jī)?cè)?/span>這組的2名學(xué)生分別為 ,成績(jī)?cè)?/span>這組的1名學(xué)生為,則從中任抽取3人的所有可能結(jié)果為, , , , , , , , , , , , , 共20種.

其中兩組中沒有人被抽到的可能結(jié)果為,只有1種,

兩組中至少有1人被抽到的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列表示錯(cuò)誤的是(
A.0??
B.??{1,2}
C.{(x,y)| ={3,4}
D.若A?B,則A∩B=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過(guò)600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩名同學(xué)參加定點(diǎn)投籃測(cè)試,已知兩人投中的概率分別是,假設(shè)兩人投籃結(jié)果相互沒有影響,每人各次投球是否投中也沒有影響.

(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達(dá)標(biāo),求甲達(dá)標(biāo)的概率;

(Ⅱ)若每人有4次投球機(jī)會(huì),如果連續(xù)兩次投中,則記為達(dá)標(biāo).達(dá)標(biāo)或能斷定不達(dá)標(biāo),則終止投籃.記乙本次測(cè)試投球的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若對(duì)于任意x∈R,都有f(x﹣2)≤f(x),則實(shí)數(shù)a的取值范圍是(
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R的函數(shù)f(x)= 是奇函數(shù),其中a,b為實(shí)數(shù)
(1)求a,b的值
(2)用定義證明f(x)在R上是減函數(shù)
(3)若對(duì)于任意的t∈[﹣3,3],不等式f(t2﹣2t)+f(﹣2t2+k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐S﹣ABCD,底面ABCD為菱形,SA⊥平面ABCD,∠ADC=60°,E,F(xiàn)分別是SC,BC的中點(diǎn).

(1)證明:SD⊥AF;
(2)若AB=2,SA=4,求二面角F﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的個(gè)數(shù)是(
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“x∈R,x2+2<0”是全稱命題;
③若p:x∈R,x2+4x+4≤0,則q:x∈R,x2+4x+4≤0是全稱命題.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)f(x)是滿足f(x)+f(﹣x)=0,在(﹣∞,0)上 ,且f(5)=0,則使f(x)<0的x取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案