已知(1+x)n(n∈N*)的展開(kāi)式中,x2與x3的系數(shù)相等,則n=________.

5
分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出展開(kāi)式的通項(xiàng),求出x2與x3的系數(shù),列出方程求出n.
解答:展開(kāi)式的通項(xiàng)為T(mén)r+1=Cnrxr
所以展開(kāi)式x2的系數(shù)為Cn2;x3的系數(shù)為Cn3
∴Cn2=Cn3
∴2+3=n即n=5
故答案為5
點(diǎn)評(píng):本題考查利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f'(x)是f(x)的導(dǎo)數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個(gè)結(jié)論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設(shè)f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導(dǎo)函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結(jié)論正確的是
①②③
①②③
(多填、少填、錯(cuò)填均得零分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•莆田模擬)已知(1+x)n(n∈N*)的展開(kāi)式中,x2與x3的系數(shù)相等,則n=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知f'(x)是f(x)的導(dǎo)數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個(gè)結(jié)論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設(shè)f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導(dǎo)函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結(jié)論正確的是______(多填、少填、錯(cuò)填均得零分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省達(dá)州市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知f'(x)是f(x)的導(dǎo)數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個(gè)結(jié)論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設(shè)f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導(dǎo)函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結(jié)論正確的是    (多填、少填、錯(cuò)填均得零分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建省莆田市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知(1+x)n(n∈N*)的展開(kāi)式中,x2與x3的系數(shù)相等,則n=   

查看答案和解析>>

同步練習(xí)冊(cè)答案