3.如圖,在直棱柱ABC-A1B1C1中,AB=AC=4,∠BAC=90°,E為BC的中點.
(1)求證:平面AB1E⊥平面BCC1B1;
(2)若側(cè)面ABB1A1為正方形,求證;BC1⊥平面AB1E.

分析 (1)利用等腰三角形的性質(zhì)可證AE⊥BC,又由直棱柱的性質(zhì)可證AE⊥C1C,可證AE⊥平面BCC1B1,進而證明平面AB1E⊥平面BCC1B1
(2)以A1為原點,建立空間直角坐標系,分別求出點B1,C1,A,E,B的坐標,進而可求$\overrightarrow{B{C}_{1}}$,$\overrightarrow{{B}_{1}A}$,$\overrightarrow{{B}_{1}E}$的坐標,由$\overrightarrow{B{C}_{1}}$•$\overrightarrow{{B}_{1}A}$=0,$\overrightarrow{B{C}_{1}}$•$\overrightarrow{{B}_{1}E}$=0,可證BC1⊥B1A,BC1⊥B1E,進而利用線面垂直的判定定理即可證明BC1⊥平面AB1E.

解答 證明:(1)∵AB=AC=4,E為BC的中點.
∴AE⊥BC,
又∵在直棱柱ABC-A1B1C1中,AE⊥C1C,BC∩C1C=C,
∴AE⊥平面BCC1B1,
∵AE?平面AB1E,
∴平面AB1E⊥平面BCC1B1
(2)如圖,以A1為原點,建立空間直角坐標系,
可得:B1(4,0,0),C1(0,4,0),A(0,0,4,),E(2,2,4),B(4,0,4),
可得:$\overrightarrow{B{C}_{1}}$=(-4,4,-4),$\overrightarrow{{B}_{1}A}$=(-4,0,4),$\overrightarrow{{B}_{1}E}$=(-2,2,4),
由于:$\overrightarrow{B{C}_{1}}$•$\overrightarrow{{B}_{1}A}$=16+0-16=0,
$\overrightarrow{B{C}_{1}}$•$\overrightarrow{{B}_{1}E}$=8+8-16=0,
∴BC1⊥B1A,BC1⊥B1E,
又∵B1A∩B1E=B1,
∴BC1⊥平面AB1E.

點評 本題主要考查了等腰三角形的性質(zhì),直棱柱的性質(zhì),線面垂直的判定定理,面面垂直的判定定理的應用,考查了空間想象能力和推理論證能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知,a=2${\;}^{\frac{4}{3}}$,b=4${\;}^{\frac{2}{5}}$,c=2${\;}^{\frac{1}{3}}$,則( 。
A.b<a<cB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知F為雙曲線$C:\frac{x^2}{3}-\frac{y^2}{3}=1$的一個焦點,則點F到C的一條漸近線的距離為( 。
A.$\sqrt{3}$B.3C.$2\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,四邊形ABCD是圓柱的軸截面,E是底面圓周上異于A、B的一點,則下面結(jié)論中錯誤的是( 。
A.AE⊥CEB.BE⊥DEC.DE⊥CED.面ADE⊥面BCE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖所示,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點,從A測得M點的仰角∠MAN=60°,C點的仰角∠CAB=30°,以及∠MAC=105°,從C測得∠MCA=45°,已知山高BC=150米,則所求山高MN為150$\sqrt{6}$m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若對于定義在R上的函數(shù)f(x)當且僅當存在有限個非零自變量x,使得f(-x)=f(x),則稱f(x)為類偶函數(shù),若函數(shù)f(x)=x3+(a2-2a)x+a為類偶函數(shù),則f(a)的取值范圍為( 。
A.(0,2)B.(-∞,0]∪[2,+∞)C.[0,2]D.(-∞,0]∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.“雙曲線方程為x2-y2=3”是“雙曲線離心率e=$\sqrt{2}$”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.圓O1:(x-2)2+(y+3)2=4與圓O2:(x+1)2+(y-1)2=9的公切線有3條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦點為F1,F(xiàn)2,P是橢圓C上一點,若PF1⊥PF2,$|{{F_1}{F_2}}|=2\sqrt{3}$,△PF1F2的面積為1.
(1)求橢圓C的方程;
(2))如果橢圓C上總存在關(guān)于直線y=x+m對稱的兩點A,B,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案