【題目】已知函數(shù).

1)若,試判斷的符號;

2)討論的零點的個數(shù).

【答案】1)答案不唯一,具體見解析(2)當時,個零點;當時,個零點

【解析】

1)首先計算得到,設,利用二次求導,判斷函數(shù)的單調(diào)性,比較大。

2)首先求函數(shù)的導數(shù),討論,兩種情況討論函數(shù)的單調(diào)性,判斷函數(shù)的零點個數(shù),當時,

,再次求函數(shù)的導數(shù),判斷函數(shù)的單調(diào)性和最小值,討論求函數(shù)的零點個數(shù).

解:(1.

,則.

,則

∴當時,;當時,.

∴當時,.,從而.

上單調(diào)遞增.

∴當時,,從而;

時,,從而

時,,從而.

2的定義域為,.

∴當時,,故上單調(diào)遞增,

,∴個零點.

時,令,得;令,得.

在上上單調(diào)遞減,在上單調(diào)遞增.

.

,則.

∴當時,;當時,..

∴當時,,即,

又當時,;當時,;故個零點.

時,,故個零點.

時,,即

又當時,;由(1)知,故個零點.

時,個零點;當時,個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學組織高二年級開展對某品牌西瓜市場調(diào)研活動.兩名同學經(jīng)過了解得知此品牌西瓜,不僅便宜而且口味還不錯,并且每日的銷售量y(單位:千克)與銷售價格x(元/千克)滿足關系式:,其中a為常數(shù).已知銷售價格為5/千克時,每日可售出此品牌西瓜11千克.若此品牌西瓜的成本為3/千克,試確定銷售價格x的值,使該商場日銷售此品牌西瓜所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高二年級學生某次數(shù)學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數(shù)學成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學生的成績按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】氣象意義上,從春季進入夏季的標志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個數(shù)據(jù)的中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進入夏季的地區(qū)的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為確定下一年度投入某種產(chǎn)品的生產(chǎn)所需的資金,需了解每投入2千萬資金后,工人人數(shù)(單位:百人)對年產(chǎn)能(單位:千萬元)的影響,對投入的人力和年產(chǎn)能的數(shù)據(jù)作了初步處理,得到散點圖和統(tǒng)計量表.

1)根據(jù)散點圖判斷:哪一個適宜作為年產(chǎn)能關于投入的人力的回歸方程類型?并說明理由?

2)根據(jù)(1)的判斷結果及相關的計算數(shù)據(jù),建立關于的回歸方程;

3)現(xiàn)該企業(yè)共有2000名生產(chǎn)工人,資金非常充足,為了使得年產(chǎn)能達到最大值,則下一年度共需投入多少資金(單位:千萬元)?

附注:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為(說明:的導函數(shù)為)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)設函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,直線經(jīng)過點,傾斜角為,以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為曲線.

)寫出直線的參數(shù)方程及曲線的普通方程;

)求直線和曲線的兩個交點到點的距離的和與積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,點分別是的中點,點的重心.

1)證明:平面;

2)若平面平面,,,,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案