【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

【答案】(1)人,,直方圖見(jiàn)解析;(2)人、人、人;(3).

【解析】

(1)由頻率分布直方圖能求出第組的頻數(shù),第組的頻率,從而完成頻率分布直方圖.

(2)根據(jù)第組的頻數(shù)計(jì)算頻率,利用各層的比例,能求出第組分別抽取進(jìn)入第二輪面試的人數(shù).

(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,利用列舉法能出所有基本事件及滿(mǎn)足條件的基本事件的個(gè)數(shù),利用古典概型求得概率.

(1)①由題可知,第2組的頻數(shù)為人,

②第組的頻率為

頻率分布直方圖如圖所示,

(2)因?yàn)榈?/span>組共有名學(xué)生,

所以利用分層抽樣在名學(xué)生中取名學(xué)生進(jìn)入第二輪面試,每組抽取的人數(shù)分別為:

組: 人,

組:人,

組:人,

所以第組分別抽取人、人、人進(jìn)入第二輪面試.

(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為

則從這六位同學(xué)中抽取兩位同學(xué)有種選法,分別為:,,,,,,,,,,,

其中第組的位同學(xué)中至少有一位同學(xué)入選的有種,分別為:,,

∴第組至少有一名學(xué)生被考官面試的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研課題組通過(guò)一款手機(jī)APP軟件,調(diào)查了某市1000名跑步愛(ài)好者平均每周的跑步量(簡(jiǎn)稱(chēng)“周跑量”),得到如下的頻數(shù)分布表

周跑量(km/周)

人數(shù)

100

120

130

180

220

150

60

30

10

(1)在答題卡上補(bǔ)全該市1000名跑步愛(ài)好者周跑量的頻率分布直方圖:

注:請(qǐng)先用鉛筆畫(huà),確定后再用黑色水筆描黑

(2)根據(jù)以上圖表數(shù)據(jù)計(jì)算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計(jì)該市跑步愛(ài)好者周跑量的分布特點(diǎn)

(3)根據(jù)跑步愛(ài)好者的周跑量,將跑步愛(ài)好者分成以下三類(lèi),不同類(lèi)別的跑者購(gòu)買(mǎi)的裝備的價(jià)格不一樣,如下表:

周跑量

小于20公里

20公里到40公里

不小于40公里

類(lèi)別

休閑跑者

核心跑者

精英跑者

裝備價(jià)格(單位:元)

2500

4000

4500

根據(jù)以上數(shù)據(jù),估計(jì)該市每位跑步愛(ài)好者購(gòu)買(mǎi)裝備,平均需要花費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次函數(shù)

1)寫(xiě)出該函數(shù)的頂點(diǎn)坐標(biāo);

2)如果該函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線C的方程為 ,點(diǎn) ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.
(1)求曲線C的直角坐標(biāo)方程及點(diǎn)R的直角坐標(biāo);
(2)設(shè)P為曲線C上一動(dòng)點(diǎn),以PR為對(duì)角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長(zhǎng)的最小值及此時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸非負(fù)半軸重合,直線的極坐標(biāo)方程為,圓C的參數(shù)方程為,

(1)求直線被圓C所截得的弦長(zhǎng);

(2)已知點(diǎn),過(guò)點(diǎn)的直線與圓所相交于不同的兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;

(3)若,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)某種食材營(yíng)養(yǎng)價(jià)值的認(rèn)識(shí)程度,某檔健康養(yǎng)生電視節(jié)目組織名營(yíng)養(yǎng)專(zhuān)家和名現(xiàn)場(chǎng)觀眾各組成一個(gè)評(píng)分小組,給食材的營(yíng)養(yǎng)價(jià)值打分(十分制).下面是兩個(gè)小組的打分?jǐn)?shù)據(jù):

第一小組

第二小組

(1)求第一小組數(shù)據(jù)的中位數(shù)與平均數(shù),用這兩個(gè)數(shù)字特征中的哪一種來(lái)描述第一小組打分的情況更合適?說(shuō)明你的理由.

(2)你能否判斷第一小組與第二小組哪一個(gè)更像是由營(yíng)養(yǎng)專(zhuān)家組成的嗎?請(qǐng)比較數(shù)字特征并說(shuō)明理由.

(3)節(jié)目組收集了烹飪?cè)撌巢牡募訜釙r(shí)間:(單位:)與其營(yíng)養(yǎng)成分保留百分比的有關(guān)數(shù)據(jù):

食材的加熱時(shí)間(單位:

營(yíng)養(yǎng)成分保留百分比

在答題卡上畫(huà)出散點(diǎn)圖,求關(guān)于的線性回歸方程(系數(shù)精確到),并說(shuō)明回歸方程中斜率的含義.

附注:參考數(shù)據(jù):,.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,分別是的中點(diǎn),且.

1)求直線所成角的大小;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣

(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;

(2)若f(x)在[1,e]上的最小值為,求實(shí)數(shù)a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案