精英家教網 > 高中數學 > 題目詳情
16.將函數y=(x-3)2圖象上的點P(t,(t-3)2)向左平移m(m>0)個單位長度得到點Q.若Q位于函數y=x2的圖象上,則以下說法正確的是( 。
A.當t=2時,m的最小值為3B.當t=3時,m一定為3
C.當t=4時,m的最大值為3D.?t∈R,m一定為3

分析 函數y=(x-3)2圖象上,向左平移3個單位得到函數y=x2的圖象,即可得出結論.

解答 解:函數y=(x-3)2圖象上,向左平移3個單位得到函數y=x2的圖象,
∴?t∈R,m一定為3,
故選D.

點評 本題考查函數的圖象變換,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

6.表是某工廠1-4月份用電量(單位:萬度)的一組數據
月份x1234
用電量y4.5432.5
由表可知,用電量y與月份x之間有較好的線性相關關系,其線性回歸直線方程是$\stackrel{∧}{y}$═-0.6x+a,則a等于(  )
A.5.1B.4.8C.5D.5.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知雙曲線${x^2}-\frac{y^2}{m}=1$與拋物線y2=8x的準線交于點P,Q,拋物線的焦點為F,若△PQF是等邊三角形,則雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{25}{9}$D.$\frac{16}{9}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知$n=\int\begin{array}{l}{e^6}\\ 1\end{array}\frac{1}{x}dx$,那么${(\sqrt{x}-\frac{5}{x})^n}$的展開式中含${x^{\frac{3}{2}}}$的項的系數為-30.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,F1,F2分別為橢圓的左右焦點,P為橢圓上任意一點,△PF1F2的周長為$4+2\sqrt{3}$,直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l與圓x2+y2=1相切,過橢圓C的右焦點F2作垂直于x軸的直線,與橢圓相交于M,N兩點,與線段AB相交于一點(與A,B不重合).求四邊形MANB面積的最大值及取得最大值時直線l的方程;
(Ⅲ)若|AB|=2,試判斷直線l與圓x2+y2=1的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.如圖1,等腰梯形BCDP中,BC∥PD,BA⊥PD于點A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如圖2),使∠P'AD=90°.
(Ⅰ)求證:CD⊥平面P'AC;
(Ⅱ)求二面角A-P'D-C的余弦值;
(Ⅲ)線段P'A上是否存在點M,使得BM∥平面P'CD.若存在,指出點M的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.如果cosα=$\frac{1}{5}$,且α是第四象限的角,那么cos(α+$\frac{π}{3}$)=(  )
A.$\frac{1-6\sqrt{2}}{10}$B.$\frac{\sqrt{3}+2\sqrt{6}}{10}$C.$\frac{1+6\sqrt{2}}{10}$D.$\frac{\sqrt{3}-2\sqrt{6}}{10}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.若$cos(\frac{π}{2}-a)=-\frac{1}{3}$,則cos(π-2a)=(  )
A.-$\frac{4\sqrt{2}}{9}$B.-$\frac{7}{9}$C.$\frac{7}{9}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.在平面直角坐標系xOy中,已知$x_1^2-ln{x_1}-{y_1}=0$,x2-y2-2=0,則${({x_2}-{x_1})^2}+{({y_2}-{y_1})^2}$的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案