【題目】對于命題:存在一個常數(shù),使得不等式對任意正數(shù),恒成立.
(1)試給出這個常數(shù)的值;
(2)在(1)所得結(jié)論的條件下證明命題;
(3)對于上述命題,某同學(xué)正確地猜想了命題:“存在一個常數(shù),使得不等式對任意正數(shù),,恒成立.”觀察命題與命題的規(guī)律,請猜想與正數(shù),,,相關(guān)的命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若分別是橢圓的左、右焦點,過的直線與橢圓交于不同的兩點,求的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時,f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象有兩個不同的公共點,則實數(shù)a的值為( 。
A. n(n∈Z) B. 2n(n∈Z)
C. 2n或(n∈Z) D. n或(n∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x-1|+|2x-a|+a,x∈R.
(1)當(dāng)a=3時,求不等式f(x)>7的解集;
(2)對任意x∈R恒有f(x)≥3,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P—ABC中,PC底面ABC,AB=BC,D、F分別為AC、PC的中點,DEAP于E。(1)求證:AP平面BDE;(2)求證:平面BDE平面BDF;(3)若AE:EP=1:2,求截面BEF分三棱錐P—ABC所成上、下兩部分的體積比。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的平面圖形中,ABCD是邊長為2的正方形,△HDA和△GDC都是以D為直角頂點的等腰直角三角形,點E是線段GC的中點.現(xiàn)將△HDA和△GDC分別沿著DA,DC翻折,直到點H和G重合為點P.連接PB,得如圖的四棱錐.
(Ⅰ)求證:PA//平面EBD;
(Ⅱ)求二面角大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語文、數(shù)學(xué)、英語三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)計算上線考生中抽取的男生成績的方差;(結(jié)果精確到小數(shù)點后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會,求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間20名工人年齡數(shù)據(jù)如下表:
年齡(歲) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合計 |
工人數(shù)(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求這20名工人年齡的眾數(shù)與平均數(shù);
(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)從年齡在24和26的工人中隨機(jī)抽取2人,求這2人均是24歲的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com