【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:
方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;
方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.
(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;
(2)從該銷售公司隨機(jī)選取一名推銷員,對他(或她)過去兩年的銷售情況進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:
月銷售產(chǎn)品件數(shù) | 300 | 400 | 500 | 600 | 700 |
次數(shù) | 2 | 4 | 9 | 5 | 4 |
把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)從某醫(yī)院中隨機(jī)抽取了位醫(yī)護(hù)人員的關(guān)愛患者考核分?jǐn)?shù)(患者考核:分制),用相關(guān)的特征量表示;醫(yī)護(hù)專業(yè)知識考核分?jǐn)?shù)(試卷考試:分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:
(1)求關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到);
(2)利用(1)中的線性回歸方程,分析醫(yī)護(hù)專業(yè)考核分?jǐn)?shù)的變化對關(guān)愛患者考核分?jǐn)?shù)的影響,并估計(jì)當(dāng)某醫(yī)護(hù)人員的醫(yī)護(hù)專業(yè)知識考核分?jǐn)?shù)為分時(shí),他的關(guān)愛患者考核分?jǐn)?shù)(精確到).
參考公式及數(shù)據(jù):回歸直線方程中斜率和截距的最小二乘法估計(jì)公式分別為
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命題“若sinx=siny,則x=y”的逆否命題為真命題
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.命題“若△ABC為銳角三角形,則有sinA>cosB”是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,EP交圓于E,C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且PG=PD,連接DG并延長交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.
(1)求證:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)的零點(diǎn);
(2)若在恒成立,求的取值范圍;
(3)設(shè)函數(shù),解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50度至350度之間,頻率分布直方圖如圖所示.
(1)根據(jù)直方圖求x的值,并估計(jì)該小區(qū)100戶居民的月均用電量(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)從該小區(qū)已抽取的100戶居民中,隨機(jī)抽取月用電量超過250度的3戶,參加節(jié)約用電知識普及講座,其中恰有ξ戶月用電量超過300度,求ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ax2+(2a﹣1)x.
(1)若a= ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x∈[1,+∞)時(shí)恒有f(x)≤a﹣1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣lnx+a﹣1,g(x)= +ax﹣xlnx,其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥1時(shí),g(x)的最小值大于 ﹣lna,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}前n項(xiàng)和為Sn , a1=a2=2,且滿足Sn+Sn+1+Sn+2=3n2+6n+5,則S47等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com