若函數(shù)f(x)=x3-ax(a>0)的零點(diǎn)都在區(qū)間[-10,10]上,則使得方程f(x)=1000有正整數(shù)解的實(shí)數(shù)a的取值個(gè)數(shù)為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:由題意根據(jù)函數(shù)f(x)=x3-ax(a>0)的零點(diǎn)都在區(qū)間[-10,10]上可得a的范圍,然后對(duì)f(x)進(jìn)行求導(dǎo),求出函數(shù)在區(qū)間[-10,10]上的最大值,然后再進(jìn)行判斷.
解答:∵函數(shù)f(x)=x3-ax(a>0)的零點(diǎn)都在區(qū)間[-10,10]上,
又f(x)=x3-ax=x(x2-a)=0,令f(x)=0,
∴x=0或x=±,
函數(shù)f(x)=x3-ax(a>0)的零點(diǎn)都在區(qū)間[-10,10]上
≤10∴a≤100
∵f'(x)═3x2-a,令f(x)′=0,
解得x=±,
∴當(dāng)x>或x<-時(shí),f(x)′>0,為增函數(shù);
當(dāng)-<x<時(shí),f(x)′<0,為減函數(shù);
∴當(dāng)x=-時(shí),有極大值,f(-)=-a×()=,
<1000,f(10)=1000-10a<1000,結(jié)合函數(shù)的單調(diào)性f(x)=x3-ax(a>0)
知方程f(x)=1000有正整數(shù)解在區(qū)間[10,+∞)上,此時(shí)令x3-ax=1000,可得
此時(shí)有a=,由于x為大于10的整數(shù),由上知≤100,令x=11,12,13時(shí),不等式成立,
當(dāng)x=14時(shí),有=196->100
故可得a的值有三個(gè),
應(yīng)選C.

點(diǎn)評(píng):此題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,解題的關(guān)鍵是求出f(x)在區(qū)間[-10,10]上的值域,是一道好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實(shí)數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習(xí)冊(cè)答案